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'1.0. SUMMARY OF FIRST QUARTERLY STATUS,

ORBIT DETERMINATION PROGRAM

In this repoftdare presented detailed technical summaries of the

yyeffort accomplished on Phase II of the Orbit Determination Program for the

- . period July 22 to Octcber 22, 1963, inclusive. Efforts carried out'undef
. Phase 1 which are applicable to the precision version of the Program are

reported here as well. o - 1%'):}

’ Section 2.0 exhaustively defines the coordinate transformations

vwhich have been or will be:included in MINIVAR. These transformations

have been taken from the astronomical literature and their primary purpose
is to reduce positions and velocities specified in moving coordinate systems
to corresponding quantities in.ah inertial coordinate system. The inertial
system is specified by the mean equator and equinox obtaining at oP.o
January 1 of the year subsequent to the year in which the trajectory of
interest takes place. Astronomical ephemeridea used in the Program are

'o;referenced to this base date system, and all trajectory computation takes

place in this system. In addition to position and velocity transformations,
provision has been made for transforming the earth's gravitational force field:
into the same inertial frame. Libration transformations have been included
for the two-fold purpose of specifying vehicle position and velocity with
reapect to selonographic coordinates rigidly attached to the lunar surface,
and transforming the moon's gravitational force field to the base date inertial
reference. The work reported in this Section was developed under Phase i{'“n =
Hnhe
Some of the transformations reported in Section 2.0, particularly those.
dealing with precession and nutation, are approximations. The same astronomical
literature from which these approximations were obtained, however, report more
accurate versions for the elements of the transformation matrices. In Section
3.0, the equations for these higher accuracy quantities have been tabulated.
In the case of mutation particularly, the amount of computation required to
obtain the increased accuracy is quite large, and, before including such
expressions in the program tests will be made to determine whether or not the
increased accuracy affects the desired Program preclsion.

Section 4.0 derives an equation for computing timing signal delay from

WWV to a range-and-range-rate tracking station. An error analysis is

included to illustrate the error magnitudes to be expected in a few typical 4
cases.
Timing errors in Minitrack and range—and-range-rate syatems data are
described in Section 5.0, and methods for correcting these errors are
outlined. A technique for resolving range ambiguities in R&R data is
described. : ‘ '

The work reported in Sections 4;0 and 5.0 was carried out under Phase I.

 Results from a comprehensive evaluation of precision in FORTRAN IV




single and double precision subroutines are given in Section 6.0. Common
routines such as sine, cosine, arctangent, square root, and exponential
vere tested; the test results were generally in close agreement with the
published precisions for these routines.

Recommendations are made in Section 7.0 for storing atmospheric
models for the Earth, Venus, Mars and Jupiter. Interpolation procedures are

suggested, and, for the lower and upper Earth atmosphere models, characteristics =

¢ for a transition region are recommended to overcome discontimities in both the
: models and the applicable drag equations. . '

Hatrix invorsions axe minimlzed by the Kalman filtering process‘ ‘none-
theless, at least one matrix {Y) must be inverted in order to compute the
optimum veighting matrix for‘the residuals. Section 8.0 describes a method
whereby a matrix ﬂaving an order up to 8 x 8 may be inverted through use of
.~ an approximation to the true inverse and an iteration procedure for refining
. this estimate.

: Sections 9.0 and 10.0 are both related to the use of two-body
trajectories in the Orbit Determination Program. A central-difference
~ numerical differentiation formmla is derived in Section 9.0; the uses of

. this formula are to be:

'75 a. a measure of the precislon attainable in computing the elements
of the two-body state transition matrix, whether by means of the variational ‘
paramoters now used in MINIV!R or by some other techniquo, _

.~ 'b. a method for obtaining the elements of the true transition matrix’
in those instances for which the two-body approximation is inadequate. '

Section 10.0 treats the problem of accurately representing two-body
- motion, with particular attention being given to a universal representation
. applicable to all conics. Herrick's variables offer promise in this direction,.
and two methods are under consideration for overcoming difficulties arising -
from large values of the independent variable. One method suggested by
Herrick, employs a "shifted epoch" to maintain reasonable values of the
time—dependent argument; the other approach calls for the use of continued
fractions rather than infinite series in representing the variables 80 as
to delimit the number of terms which must be carried for a specified accuracy.
" Section 10.0 also describes a two-body representation in terms of range
angle or differential true anomaly. A program exists in this formulation
vhich computes not only the conic but also the elements of the state transition
matrix.

Bias errors to be included in MINIVAR are discussed in Section 11.0.
Among these errors are station location errors, uncertainty in the knowledge
of Earth's mass and oblateness terms, and uncertainties in the velocity of
light and the astronomical unit. ' Section 11.0 discusses augmentation of
the state transition matrix and the point transformation matrices associated
with the variational parameters.

 Another aspect of the two-body problem is treated in Section 12.0.




S program: ié described whereby the effect of errors in the elements of the

. - state transition matrix on the elements of the Kalman filter K may be
~ computed. . ‘It is desirable to maintain the same precision in K as that

%; contained-in the residual, (yc - yo); consequently, a computer study based
on this prngram,will be run to determine to what precision the elements of

 the transition matrix should be computed to obtain a given precision in K.

The executive routine, as described 1n Section 13.0, is based upon
a concept. of close communication with IBSYS. This concept is currently

" being revised, and, consequently not all of the work here reported is

. directly applicable to the final system. It is reported, howover, for the

% 7 sake of completanesa.

A brief ccmparision of the oblateness terms used in ITEM, MINIVAR
and by JPL, based upon work by Kaula, is given in Section 14.0. The
conclusion, based on this comparision, is that Kaula's recommended notation
and nominal values will be included in the Phase II Program.

Correction formnlae for electromagnetic propagation through both the .
troposphere and ionosphere are contained in Section 15.0. An exponentially-
decaying density is assumed for the troposphere, whereas a three-parameter
model is used for the ionosphere; both models are numerically integrated to
compute range and range-rate corrections in the troposphere. Coordinate
systems and transfonmationa required for making the corrections are described.
This work was carried out under Phase I, but is directly applicable to
the high precision version of tha Orbit Determination Progr&m.
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. 2.1, INTRODUCTION

:  This report describes the transformation of vehicle initial conditions
and earih and lunar oblateness attractions to the "base date™ coordinate system
used for trajectory calculations in MINIVAR®, The "base date" system is de~
termined by the direction of the vermal equinak of 0RO January 1 of the year |
' squant to the launch year. It has been chosen as the basis for caloula- -
tion-becanse the planetary and solar coordinates are written on tapes in that -
coordinate system. Rather than transform the tape informatien the vehicle
: onditions and the oblatenese aceeleratiens are. transfermed 1nto the

;system.

r’Vehicle initial conditlone that are: msertad 1n an ea.rth referenced

: “system, such as latituds, longitude, altitude, are transformed first

. %o a systen determined by the vernal equinox of date, This system"
“"(true) differs from the base date system by the earth's nutation and
. precession. Transformation by the nutation matrix [N] and the pre-
* ceeslon matrix [A) thereupon brings the initial conditions fnto the
. ,ba,ee date system. ‘ .

2. The oblateness attraction of the earth 1s calculated from a knevledge
of R, tha position of the vehicle from the center of the earthy ex-
presaed in the true earth system, Since vehicle position as c¢al~
. culated in the trajectory portion is in base date components these

compopents must be transformed via precession and nutation into the
true earth syatem. The resultant attraction is then transformed -
back into’ the base date system.

 The oblateneas a'b:tra.etion of the moon has not been employed previeusly‘ '
in MINIVAR. It is calculated from the vehicle position with respect .
to the moon's center and the lunar oblateness matrix; the latter ‘
. takes account of -spherical harmonicas of potential of degree ~3 based
,. on the three lunar moments of inertia,

The transformations described in this repert are also employed in
’ calculation of the observations and the matrix of their partial derivatives
with respec‘b to the state variables. ‘These applications are not discussed

here,:. ’ ) o '

The snbroutines here descrlbed are generally single preclslon, in-
vestigatlon of double precision has been reserved for phase II. :

. The transformations of lunar-based initial condltions described \
herein have not been programmed in phase I. It is presently planned to in~
corpora.te them in phaae II. S : '

%The "base date" employed he} is te distingulshed from the "base time” of
reference 8. The latter is 0h BMcember of the year prior to launchj it
is used as an arbitrary referem:e point for input data, observation time and
planetary tape in the Minimum Varlance Orbit Determinatien Program.

o
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e 525‘ )?f.along m vernal

- No attempt is here made to derive basic e.stronomlcal transformations %
such as precession; nutation, libration or the Greenwich hour angle of the - -

vernal equinax, representing, as they do, years* of assiduous labor by experts
in celestial mechanics. Rather, those results that apply to the present orbit

detem}qetion program are presented in a form that may be programmed readily,
224 m‘INITION o COORDINA’IE SYSTEMS

. The preceesion, nutation, lj.bration and other traneformations to be

used 1n the Orbit Determination Program all represent rigid rotation of right-

handed cartesian coordinate systems. Hende, the matrices are real, orthogonal
and have determinants equal to +1. The coordinate systems involved are defined
1n th:le section, the transformtiona are defined in the following: eection.

Unit vectors ere characterized by the circumflex accent A .

)?g, 9539'. x,elong mean vernal equj.nox M (intersection of eclipl:id
o o{ base date and mean equatorial plane of base date). : R
' s normal to mean equatoriel plane of baee date, positive in
hemis:

e such that 7o 2, ia right handed orthogonal. o

' &%2@ - Rastong pean vernal equinox _g;g (mtereection of mean eqnator |

of date and eclipti¢ of date).

normal to x;:an equator of date, ] 5 gitive in northern hemisphere.

Yanormal to Rgand & so that XqJoZq forhs a right hended
system. '

: uinax gj_;g (intersection of true equatorial
' plans and ecliptic of fate).

Z¢ normal to true eqnm, positive £ northern hemiSphere.
% normal to s 3; ~and d“such that. ﬁg e4¢ form a right handed
system.

A .
QMYMQA X.‘along the (A) prmciple ax:.s of moon, positive on earth gide, ZM .
along the (C) principle axis of moon positive in direction of rortation
moon with respect to:.space; - .
'« 8long the (B) principle axis of moon, to form right handed: system
vith £, and 2,,‘ .« ‘
&9526 /Kq in true equator of earth and in Greenwich Meridian: 35 nqrmal to
; true equator, positive toward north pole 3 yq to form right handed
‘ system with ﬁq and 36 o . f

) precession formula was first used in the Nautical Almanac in 1854, a nntation
formula in 1767. (See p. 181 of refersnce 3.) The Present-day formulas are
refinements of the publloations of S. Newcomb in 1897. :




2.3,

LIST CI" TRANSF ORMATIGW

fGeocentrm rt. ascension (apparent siderial tlme), geocentrlc angJ.e i
-or declination of line from earth center to vehicle; geocentric drs—
'z‘tance from vehicle. See Figure I. : : S

Asnormal to vehlcle s local meridian, posi‘blve eastward, :

/?;along geocentric radius vector to vehicle- :
&‘normal to Ac and £ and aueh that /TE & @e form a rlght handed

. system. See Flgure .. e
loca} ge_qg;-_a_pb_g system L normal to merldlan, towards east,, (& x&' ) T

normal to ellipsoid, through position of vehicle; a normal to A.
A; such that ] @3 © ig right handed. L

?wr

i g‘gmmg.g longitude s posmtive easterly from Greenwich meri.dian through
© 360 degrees; geographic latitude (angle between equatorial plane and
. normal to ellipsoid through vehicle position), altltude abcve elllpsoid.

. See Figure II. : , ,

/\M normal to local mqon meridia.n; Em along outward radial frnm cen'ber

of moon to vehicle 5 @ normal to @n ‘and ‘o See Figure III

selenoeentric 1ongitude, asurea in the )(‘1 )’M plane in the sense of
positive rotation about 3 selenocentric declination; selenocentric

_ distance. See Figurs m.

i jvehicle spead relatis
o \relatlve ta IT .

0 Xq Ys & frame, azimuth, fllght path angle
€ See. Flgure ., ‘

‘

The coord1nate system under From and To are defined in Sect:mn 2. 2, 1 ,

of thls‘ reporb. The matrices used are glven in Section 2 4o

SIBQL

[l
-

S mo

any is smply its transpese.

NAME | . j ACRONYM FROM 7o

B e . ) . . : A A ACA AT

Precegsion. =~~~ PFREC . Ko 9@ Zo XeleZg
- L ST : S A n A
g b e ‘ : : . A A A Ao AN
. LIBRA o X Ke JeZe

S i . A A A Ah A

Matrix  GAMMAT ; Xelo % Ke Je Ze
Geographie to Greenwich SR e AAA
Transfomation ‘ -GENMAT ( Ac},- f,ll.}_ ) ‘ ,L;éq hc X;::,r)'g L4
Declinatzon Right ' ¥ | A 440
' Ascension ’ L GENMAT(AE) ¢£) ﬁ 3’ Re | XE YeZa
Selenographic o ' GENMAT ()\M 95/4) % R S XM7M

Since all the above transformatlons are orthogonal the mverse of
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2.4. DESCRIPTION OF SUBROUTINES
2e4ele Subroutines for Transformations

2. 4.1 1. t;{:_PBEC= Precession

The spin axis of the earth is slowly precessing in inertial space due ‘

to lunarr and solar attractions on the terrestrial bulge; the plane of the earth's
orbit about. the sun (ecliptic) moves slowly because of planetary attractions.

As a result the intersection of the earth's mean equator and the ecliptic 4
© (termed: ﬁha»;varqal equinox; ¥ ) undergoes a gradual rotation is- ‘space..  There~
fore, the )? Yetq ,coordinate system as defined in Section 2.3.1s rotating with

respect to the 25?3 Zg system. Figure V illustrates this rotation of the
equinm;\ with res ct to its pos:Ltion at base date. The transformation from

XQ)’Q Q. ?Bza is A :

o O a, % Q4 Aa., Aa.,? ,4“'3 |
4 o] t]| %z % a@zi Xlaoy bsa;, A@as :
O

i ’ A,y X3 Q33 Aaoa, A,age 41;0733

L
-
O O M

- | 3
1.000 000 O - 0. 000 aqeq;o'@ - 0. ooooooisoT

/ ; o
0= O 022 349 88‘)’ + O. ooo 0 767 60T~ 0.000 co2 21

; e oo E
z O ooq 717 11(8 - 0,000 ooao7 o.000 000 96T

a, ="y,

| | 5
- oo 1 Tg
Azp* 1.0000000 - O.ooo a4q 761’5 o.,0000 A

. 1,3
z. 108 §91g - o.ooo o000 030
Qe3 = ~O- ooo | » ‘

Q.

a1 = " %

Qe * a-ea

\ ai’f + O. m:oooooeo‘f
a,3=,1.oaooooo 0000047 B




and
A, =~ ¢-°°° 296 97 { — 0.000 000 390 (3
Aa,* 75.»022 349 88 2}_ + 0, 000 006 76 ?a - 0,000 006 63 R

Aa,a s 'o.boq 71711 a —_O. co0 o0 07 (\g - 0.000 ooe_ 88 Pé

Fi

Aa, = -4Qy,
Aa.n * -0.000 243 76 ?2 -o.oo'oy 000 450 (s |

Aa.?s: j-‘o.ooQ 1lo8 ¥9 Pa’o. o000 oqo 070 2‘3 v

Aag =-A%;s

Aa‘?a: Aaas

Ady5= - 0.000 04721 (, + 0. 000 000 060 (;

AT

~)
[1]

)

a7 (27 +47)

° e AT (‘f;-f ’@AT+} A'Te) |

12
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| S@ct«im 2vhe2ol beliow. Tp is the
m Forns' given in the literstare (see References 1, 2, 3).

"26401.02. MAS Nmtion

s AT and TB ax® M'bed in the subroutlne éTE«, descri“be’d in

wber of days from Jan. 0.0, 1950 to the base
derte , ddvided by 36525. AT is the pwaber of days from the base date to the )
premt tm, divided by 36525. The base datq depends on the launch date of a
particnhr trajectory, being 0 Jan. 1 of the lubsoquent yaa;-.

mabmfmwwmmum«dm

The elemants of the [A] matrix are computed whenever needed, except

 that 17 [A] has been computed within the previous 1322 ‘seconds, the previous
. value 19 used. ; S o ;

, The oscillatory motion of the Re 957:5 s st about 1ts . position
| XQ 9‘? ) 18 given by the transformation from R 9eZe to kq 9“2,‘ .
- Syseg  °€ .

. where S lf S' é a.nd Eq are obtained from subroutine EXPR. The geemetr:lc '

significanceof ’l Se e Eq 1sshoun:lnrignreVI.

The [N] matrix above is an approximation, valid to about 0.5 x 10-8,

The exact transformation 1s given in referencs 1, pp 67-68. Fuller discussions
_of nutation may be found in references 5 and 6.

: The nutation terms are recompnted if needed and if the prior values .
are more than 0.1 day old.

‘2.1.1.3. LIBRM Librationk

The transfomation from the moon-ﬂxed axes XM9 %y to the XE YE i‘i
axes, pictnred in Figure ViI, is given by [L]: . |

: rln ﬁna 1'3
[L] = | La Lae ﬂ“ |
| Lo Loz Lo

where the l'  are given in terms of the three anglea J'z AL

e SO mwmazm




 FIGURE VII LIBRATION ANGLES
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and

ac ed \;o $40 15 +13° 064 992 (d-d,)
§, s8°, 00706) + 0% 785" 6005 (J-dgs)
& =
E

-
-

296" 7;.(43.2 + 0% 2643586 (d/"o{(,),

The quantlties € [é f ¥, q: Q. are obtained from the subreutine EDR.,V the .
" quantity ( o - c/ ) is obtained from the subroutine DATE. ‘

The libration formulas are taken from reference 4, and may be found '
also in references 2 and 1., .

The libration matrix is recomputed when needed, except that the .
prior values are used 1f they were calculated less than O. Ol days prevmusly. ;

2. 4.1.4. LIBRADT: Libration Rate

The time derivation of [L] is uaed in the transformation of 1nitial w

condiiions referenced . to the moon.

In taking the derivative of the elemnts 1( “the time rate of

‘change of £2'and of L are neglected in comparison to Lhat of A :

dﬂ = rate of precession of line of nodes ~ ef rad:la.ns/18.5 years

-3;::- = rate of change of inclination < 22._
o A
dA ~ rotation rate of moon ~ oM radians/27.5 days
dt
With the above apprm:imations one obtains

. ' jn £|¢ 103
[L] =, lz; Iez 123
| Aa. Kaa ’tdf V

X (.sMA.coSQ'-l- casAsm.Q cos z.)
: - (cosh cosn S sih Sl coss)

| lis}.o ) ':o ’.)
:—(S:JA,SM.Q ctos /A Cosf2 tose

ﬂ :-(cosAst 4.3,,.)1\ Cos2 cos.«-) o , o i
13 e ,
jzz =0

: (cosA suu.)
l“ s - (.SMASH“-)

fpto -y




The exprassion for A iss

p

A A+ Q+? Q-
where o g ‘
ie -/37- +of) w»/(f@*‘ré) cos ('Q "'("‘r y’) /940//9/;/6 /-fm,

J.w:. aosA

ER (O o266 17° 76a X-‘“’(- o.124 441 71 Xio -r ,e/w,mcf/.sec.

= -Qioé _‘?69 843 (xio7+o. esol

*

D= —0.253 se7 924 ¢ X1o 1 cos a_.
+ o. ..5'6? 414 067 Xio Cosa
+ o, 5‘7? 473 464 )({10 cos ea> fﬂozn»«/csc.
o:‘ = -0, 8¢0 6'42. m:.j 107 co.sa_‘

+0.181 177 4451 X 167 cos (8+eu'>)

!3 2q X 15HT roviass/sec,

R . PR TR




TR LA A T e .

L A e A R

S

The values of Sé 'Y P R Q ,Q come from. su’broutine EXPR; the value of T
comes from DATE; the values of L , A , T, a_ 3 »  come from LIBRA subroutine.

The above forms are those of reference 1, p. 70. ,
2edoli5a: w'r: Greenwich Hour Angle of the True Vernal Equinmc
‘The subroutine GAMMAT computes t§ 5 otation matrix [VJ that transforms

a vectef from the )?6 9534 aystem to the ‘ system. (See Section 2.2 for
definitions of. the two coordinate syetems. _ ;

. | rcos Y —-6/)18/ o
[X]= swy  cos¥ O
Yo ] 1

o o 1]

where Y= YM"'S"'\ ’deg_'z’:-ees

o o | o" 3 , 2z
X: 100° 078 S42 60 + OT 985 647 346 © JL‘ + 27901 a’xio‘i"’(d_x.)

+ 0?417 807 4eé ¢oe t' mobuLo3es®

di= ”IP [d-cl_;',] " (O/ME»/J/DA/}GJJ)'

::_: {'_3”@(1-"2 +me~5) +'v66,H il + see ]
{IB'

0. 0o "04 178 074 éa \Dsaeee.%ssc.
(1+6‘eixio“d,.) o

3000 (t-te+HeS)+ 60H~n»1+ 6“']} 8ed400
86400 )

19




= g?} cosS eq
Ip(4): ITeGRAL FarT of (1{-)

The .mputs gy EQ are obtained from EXPR, and the inputs (d-dso ),
T

(t-+g) are obtained from DATE. The valuss for HRS, HMIN and SEC are 1aunehv
date inputs to MINIVAR. ol

» The entlre subroutine is programed in double precision in order to
avoid loss of accuracy in YM (because of thé mod 360°) and in t' (because of

' ubtraction of 1a.rge, nearly equal numbers).

The expression for b/is given in references 1 and 2,
2ehel.6, GENMAT: General Purpose Orthogonal Transformation

The transfomations [u] [DRA] and [S] defined in Section 2. 3 all’

have the same form: ‘ “
-sid Aq < =snlgg cos /\ﬁ Cos 5“5 CoS/\q

[G] =1 Cas‘Aq ;sw% sw\q Cos 944 sm/\.ﬁ

o cosdy \su/q% 1

where Aq and ¢G are geodetio longitude and latitude of the sub—vehicle point
or of the observation station. '

For [DRA] , the right ascension Ag of the vehicle or sta.tionfér,epla;e:y?a
A s and the declination replaces . - -
q q°

" For [S], the 1unar 1ongitude AM of the vehlcle replaces Aq and 1unar

latitude ¢M replaces R

The above tra.nsformations may be obtalned by inspectién of Flgures I s
II, and IIT.

2.4.2. Subsidiary Subroutmg‘“}"

g 2..2.1. DATE: Subrout,ine‘for ti.me guantities

The subroutme DATE produces the time parameters for use in other

- subroutineso The inputs are calander date of launch and time since launch.

The output quantities are ¥ , Mg , AT andd-dg. The program is purely procedﬁral.

It is limited to launch dates between 1960 and 1970.

- NYEARP = year of launch o :
DAYS = day of year, on which launch occurs. (ex: DAYS = 31 for
~ launch on g5 Jan. 31) 5




v
e mose s

o _ HRS = number of hours fully expired from beginning of da,y of 1aunch
‘ : ‘ to time of launch. -
HMIN = number of minutes fully expired from beginning of hour of
launch to time of launch
SEC = pumber of seconds and fractional parts of a second expired
from beginning of minute of launch to time of launch

f tl = hours and fractions thereof from launch time to present time
of trajectory ca.lcula.tion.

Proceﬁﬁre 1

1. Caloulate I: (I) = NYEARP - 1959 | - o
2. Lcokup YR(I) and YR (1 + 1) from Table: '

N (1) X(T) : : ‘ ;
- | 0 3562 | , | g
: : 4018 : 5
- 4383
4748
5113

[
|

"%o;oaq (o R W NV SR
b4
~
O

h,.uam;ities ’re)d ‘l.fo) AT
/D/M sa/sf/aA/‘f“‘)

0"(/{ y&(]:) + ~D976 i"'”RS/e‘ + HMIIJ/144O &
t SEQ/ geq00 + (k- t}.)/e4 (DIMENSIoNLESS )

T= ( d- c{;,,)/eé..!e-! (- DIM«E/J/o/LE.ss )

| Al/= ’f— Te KD/MEI/JIOJIESS)

These outputs are recalculated as demanded by other subroutines.




2.4.2.2. EXPR: Long expressions for 5’? ’ Se > € > Q ,(q:
' This subroutine takes in T and (d-dg,) from the subroutine DATE and
“puts out nutation in longitude 3 ¥ , nutation in obliquity de » mean obliquity
eg » mean longitude of descending node of moon's mean eguator on ecliptic 2
an|

mean longitude of moon € , for use in [N], [L] and [L]. The entire sub-
~routine is repeated upon demand by other subroutines. RO °

£ e3° 445 787 4 - 05013013 76T - O 885 L X 10—‘6{2. |

: e B
& S olesraA
+ 0’85063 x16 T

fe= A€ + d€ DEGREES

A€ 0°esE 833 X15° cosQL - oS 10t eos 26
L0%183 088 x16% Cos eL + 0% 641 11 X io“(aos_(&.-' P) ;
- o%es x10¥ cos (L+1) - 0% 194 444 x15%¢os (al.-.O.)
- 0% 8333 x10 dos (2 F'-Q.)
de = ic$°. 244 44 x1c% cos @ q + o?!)g 10"(c.o6(3 q ‘(Q), o
+ 08 36588 x15¥ Coé(-?«'r") - 0% 13888 x1o co~$(¢+ r)
: e , P .
- 0% 8333 X 10°® cos((-T'+£1) + 018333 x40 cos(¢-P-$2)
- v . ) ’ - |y
+O°SEE S X 10%cos (3(- ELH") + 0288 Sy 1o "c:o,s(scl- P-_Q)

Q- 18° 112 71“” 2 - 0° ofe 953 qe2 2 (d-d{,) +0.20798 X16° 1T
.y 0%ec8ixi0 T + o2 Xt TS |

(- 4% 375451 67 + 13% 176 396 $26 8 (d»cl’,,,)
~o’113 187§ X106 2T - 0°113 018 X153 72

+0%19x 10573

22

5 i
o om i mamtag s ety i 8 R




SW

ATfJ +ch'b ~Ds§e¢'£5

Ay,- -[o 478 956 11 x10° + 0" 47& 22 X0 —r]smn.

+o°Jeo.fJoxio‘s,nen o Jé‘sssxio 6uJéL |
+otadoxdot s (L) - ot 13868 Kt 4o (3L-T)

b ‘i.}.@ Jasssxio saM(LfP)+O 3333 X 1o "'"(‘“‘ ‘n')

+0°%13888 x10 Sod(er'on)+o 11111 xio sul(en. ap)

-0’ Seb 66X10 sm(e() + 0° 18888 X1c an((‘P)

- +o Bssssxio‘.s.de((-r) O, q44 44 X 10 s:»/(a(-_()_)

~0%722 2 X107 3}}4(3( ') + O. 41666)(10 Tom(G-atrm)

.+0 30555)‘15 éw((w) v ot 106 66 x10 S (2 (- eL)

+0°.16666 Xic 6::4(& M Q) + o° 166 66 X 15 sm(( r--.Q.)

- 0°13888 X 16 S:A(JG-ZLH") _o% 111 11 x16 6:#(3((-%;2)

, _
where 7', T' , L are obtained from =




T = aeg 080 Kso 28 + o° 470 684 xio"(d A -0, 4!.(2()(1 ,r
+0° 457!xio3»re o3 xd0 (’fv

T'= aoa * 843 1877 + o 111 404 0803 (d-dg,) - ©° 0103341’

0% 010343 T%- 0% 12x154T

L= 280" 081 210 69 + ©° 93(54733(4 (d-de)

+0° 3oexio’1’+ o' 302 Xios”"

These expressions are taken from references 1 and 43 fuller dis- =
cussion of them is given in reference:2 under the explanation of the ephemeris
for the sun, and in reference 3. _ -

8. # 3. Subroutines for Tran*ﬁorming Initial Conditions and for Transfomng
R %lateness Attractions : ,

2ebe3.1. XFORM: Transformation of Initial Conditions

This subrou‘bine calls upon all the previous subroutines as needed to .

convert vehicle initial position and velocity into the base date system of

trajectory calculation. Initial conditions consist of three position coordinates
~and three velocity components. The velocity need not be specified in the same type

of coordinates as position. However, if moon referenced coordinates are usged to
express the input conditions, either for position or_velocity, the input En

should be position relative to the moon or veloeity V.  relative to the . The
output then will be the position or velocity relative to R, %i ’ expressed in

" the base date system.

Tabl}é I gives in the left column the various forms that initial posi—-f

tion or veloeity information may take, and in the right column the calculation -
required to transfer it to the base date system. The symbols used are defined -

in the table, in wha{ follows, or in Section 2.2. It has been assumed in the.

table that [K ] and [N] are negligibla in a’'single precision program. It may be

noted that [§]={we](¥] , where

[vle] = antisymmetric matrix corresponding to (WeX)

o -1 o0
= Wel 4 o0 O
o o o

in the x! )’Eis basts and “g 18 obtained from subroutine GAMMAT.

221;

e e

e e e 0

fomns



'VARIOUS FORMS FOR
INITIAL CONDITIONS

 TABIE I

INITIAL CONDITIONS Xg Y %3, Xa Js g IN BASE DATE SYSTEM

,xn Right Ascension (RA) -
P« Declination (D)

knmooomn.ﬂ.nm Dist.

,\xm_ = V¢ along »m )
. SN

<&mu <<o. along ﬂm
, gﬂ" .QF@.Q.HO”N »m

Il { oo

Vie

<x E

+ [We][ora] °
R

V magnitude of Vyo'

 def1t. pth. angle Vi

>uwu§ﬁw angle <<m

[AJIN]

,\hi%m

<n0b~\m M,L>n
[orA]| veosse S,Lm +

[l

Re |

“Ned.

B >amooma3c H_oumugwo

¢,Geodetic Latitude

‘ Ot

(AN {[el] © |-

| rm+o

@
O

gtcsin %m

2 E?u [¥]Rs

# ,\nn _ ../\.,\? along east

< <<&npobm uow.g |
<:... <§. along' 4@&.«»0&. (up)

200 fonta) | + b

- Nedt,

| .




<<e aleng Nf

. MABIE T contimued el
VARIOUS FORMS FOR T T
INITIAL CONDITIONS INITIAL CONDITIONS Xg YaZs,Xs %2, IN BASE DATE SYSTEM

,\snmu»gao | of | Voe C  [Veos¥, sinAg| -

. _ e . _ S G| | _ "
- &mwﬁ,mg path angle @& _Hz“_ HZMQ.._ Vees Kn cosAq + m(o”_ T\.._ Re¢ B

o ,,sommwpaﬁdm | R .Mi % ) .

Xe = ._M,\e along »m ., , ,‘Xm

Je = Ry along _,,Vn —.\@_Hlu_ 3 *

r N A : . N-M
© %e= Ry, aleng L i L

. o . 8

Xe= Vie along an L wm . o

. - ; , iy A . R TR

Ye= Vy. along Y [a][v] Ye [wel Wn e

.nn Q...o o.“_.obm mm % - E |

Xu= x<o E.oum» . . R

,.,&,su_ w? P._.obm ws*. | |
S mé pwoam m £ |

V.Axn ,\<o m.u.onm »3 % |

ha = <<o &.eumw ﬁ>.._ Lu mL Ww|t m u




VARIOUS FORMS FOR
INITIAL CONDITIONS

e TABLE I concluded

INITIAL CONDITIONS Xg YoZa,Xe YaZs IN BASE DATE SYSTEM

>3 Selenographic Longitude
&3 Selenographic “H‘.md itude

v x:mou.muooou&u.wo Dist.

[a][n][c]0s) mow R S | X o

) A
Y= e ppgm.>k
,\? = .S\n along ,%3

y\»tﬂ .S\P along mi

,EEEE«% v (AN WILL1[S] _M_ » :

Vam

_ Vjymagnitude of Sm
, Kaw“_.nm_g. path angle
A,azimuth angle

<3 00\3 “.L)’

T”_ z“__”_...:”& Vi n&\: eosAm r _”&mzuh_.um& * *

<3 h;\ \; ‘ L ‘, . ) m,k

.

e xﬁ‘n vector mu.os oou&ou of H.&.ou.oboo body te- 4._»»9“_.3 oxvadumom in any basis.

<<eu 4@H3§w of Ve pawa u.owwﬁe.a ao Auo&m«pﬂmvnawomouoo body, expressed pn nuw duunm.

e pum&nwon,

ﬂ.:. to be eﬂnmaugoa in phase .HH

Note: It is also possible to input xa/\wwmcxwvwﬁu &uooﬁ.w.

=

ngo basis as chosen for Ryb o

N,B.1: Options available for W =0,

. be loaded as- input.

e -~ Note1 ms« p“_.oum V\Nm a.wo.. means the dot E.omc.o.n m«o xn. ste. Wu the dot B.onsoe % is oxvu.mmmom in go

‘These du.mbm&%ﬁonm imply that inertial velocity coordinstes u‘ _

27




Also, )_ 1

e e (1‘ -52““‘2‘76

where Qe and €® are input to the program as ERAD and EPSSQ (Sect. 6, card 1,
columns 37-48 and 49-60). The values used are

O = earth radius = 1 ER = 0.6378165 x 103Ky -
&= earth ‘eccentricity, squared = 0.66934220 x 10‘:2 _

: The initial position may be input in kilemeters (KM) or earth radii
(ER) for distances and degrees (DG) for angles. The initial velocity may be
input in kilometers per second (K/S) or earth radii per hour (ER/HR). Since
the trajectory caleulation is done in earth radii and earth radii pér.hour,:
conversion from KM and K/S to ER and ER/HR is performed. It is psrformed in .
subroutine INPUT, which precedes subroutine XFORM. :

2.403.2. OBLATE: Calculation of Oblateness Attractions
2. 4.3.2 1. Earth Oblateness Attraction '

The subroutine OBLATE transforms the vehicle posi ic? ectpr th‘»
rela'bive to the earth's center into the ‘true earth system « The

oblateness attraction given in equations_6 and 7 of reference 7, is then cal-
culated using the transformed values of Rve . The resultant attraction vector

' is then expressed in the basa date system. The formulas employed are,, in

effect,

(B)g [A][Nj{s(ae)mc(zs)?}

where A’E [N]~ D\] i?B , Za* zb‘ Re andbﬁ-‘s) C'(Eg)are given in

equation 7, » reference 7, with Zr,_- for & and l?e for r.

The vector(F ) ig the earth oblateness attraction, due to the nutat:l_.g,

'precessing earth, expressed in the base date system. It is used in place of £z

of equation 6) in reference 7, and is equal to}; if precession and nutation are
ignored. : ‘ '

2.4.3.2.2. Lunar Oblateness Att.ractlon

Circtmlunar tra,]ectories are strongly influenced in the neighborhood
of . the moon by the lunar oblateness mass. Acc_:gleration terms corresponding
to lunar oblsteness attraction were added as FL to equation (l) of reference 7:

\|

o I ,RH’ = 49, 000 Ku. otherwise

F4, -’g"r Z/'F” 177;4_7 PM]*J’ == ﬁ]ﬁ/ﬂ/sfd

. 28 E




. whers  J' =

0. 667/ /\'/l

-79

,?,,. Rve —Pﬂz (kM)

Ry,

[T
o 19 0
o o0 -3z

-

A’ﬂa/ff(é &e‘c 2)

(L] [NJW x 11

//(4 /m‘)

The vector ,QV 18 vehicle position relative to earth in }e base.

date system, obtained from the trajectory calculation..

The vector

me 18

moon position relative to the earth, obtained from core storage as IME, IME ,

ZME in earth radii. In phase II of the Orbit Determination Program :é'
be vehicle position relative a raference body
case the equation £orfmis Gar = Aye + Aes -

c) other than earth. J‘:n that:
Mee 1D either case the lunar

‘oblatenesa term is appréciable only if @ais less than about 40,000 KM.

The previoua value forma is used if it was computed not more than B

81,0 aec. prior to demand.

DT The dimensions ofF as shown above are KM/SEC2.
. ER/HR2 before addition to the other perturbation terms.

They are converted

The derivation of the equations for F4 is given in Appendix 2. -

Reldialie List of Inputs and Outputs for Subroutines

Subroutine
PREC3

NUTA$
LIBRA:

LIBRADT:
GAMMAT
CENMAT (2g;, #5)

GENMAT (\\s, &)
GENMAT (D, om)

. .  DATE

B, 47

1% fe,€q
{4, 4€, €q, (, N
Ad-dso)
49 ¢, éq, 0,7

99 w

ERS, HMIN, SEC
r &4 e¢ d-dse, -Z¢

Ag I
/\_E , &z
A, Bry

NYEARP, DAYS, HRS
HMIN, SEC, '

29

EA?
[y

[11,04,09 9w

L

[x]
L6]

[0, ]
[s]

78, 7 07, ol -olse




R T d-dso . fvdccga,

ORM @, &2 - Ra, Ve

Vi, Yu, An
Al v], L'D’?'ﬂ 74/ [GJ
a7, AZJ
w77 [N] Rre | B
o [A] [N] EJ R’vc k’cs »?ns Fe

Ag ¢t; s, Vag, Vl‘, M?E
V) ¥e, Ae, da, #5, ha
- Vf,\/n, Vﬂ; V ,41 ia' .
X Ye, Z&, X, YE Z:
Xra, Yoi, 204, X, YH ?M
An, e, R, VM V#n, Vier

1.
2.

3.

be

D. B. Holdridge, "Space Trajectories Program for the IBM 7090 Ccmputer,
Js P. L. Technical Report TR. 32-223, March 2, 1962. :

The American Ephemeris and Nautical Almanac, for the year 1960, U. S
Government Printing Office » Washington D.C.

Explanatory Supplement to the Astronomical Ephemeris and the A.merican

Ephemeris and Nautical Almanac, Issued by H. M. Nautical Almanac Office,

London, 1961.

Kalensher, B. E., "Selenographic Coordinates ," J. P, L. Technical Report,
TR 32-41, February 2/, 1961, o

Astr. Paper Amer. Eph., Vol. XV, Part I p. 153, 1953.

Sterne s Te E. s "An Introduction to Celestial Mschanics“ Interscience
Publishers, Inc. s New York, 1960. _

Woolston, D. 'S., and Mohan, John. Program Manual for Minimum Variance

Precision Tracking and Orbit Prediction Program, NASA Godda.rd Space Fligh‘b

Center Publication X-640-63-144, July 1, 1963.
Shaffer, Squires and Wolf, Interplanetary Trajectory Encke Method (ITEM)

Program Menual, NASA Goddard Space Flight Center Publicatlon X"640—63"71e .

’ &b
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Appendix 1. Derivation of Precession Transformtiona to a Variable 'Bﬁao Date

- . The standard form of the prooeuion matrix 1s a set of elements
@;j(T) that are functions of the ‘gina T in Julian centuries of 36525 days
from some standard time, usually 090 January 1, 1950 to the present epoch.
This transformation/a(7)/ takes a veotor from the present-time system to the
January 1, 1950 system, i.e., through tbe small a.ngle that the earth has pre~
cessed in the time T,

It is desired to refer vectors to some recent baso date (say 040

: .Ta.nnary‘ lef yhr subaoqnent to launch) rather than the 1950 date. I-et

73 = tim in Julian centures fran 040 January 1, 1950 to 0”0 January 1,
“of year after launch.

A7 = time in Julian centuries fram 070 January 1, of year a.fter 1annch,
"~ to the present (trajectory) time.

7 = 72 fAf = time In Julian centuries frcln 0.0 Ja.nuary 1, 1950 to
trajectory time. C :

'~ With the above notation, the desired tranaformtion from the - present system to

the new base date is the product of/a7)7 which transforms from the present date
system to the 1950 date system, a.nd@dg] /vhich goes frmn the 1950 system to
the base date system. :

[»’:mrj @(mj La/rJJ
=[] [~ m er)]

Since@(j(§+#7hs s palynomial of third degree in (B #07) it is a ‘simple mtter
to vrite 11'. as a sumi

[~ +07)]> fa(73)]+[Dalon; ’3).7

So that

B(Arﬂ [=(7)]" [@(ra)] # Jaa (7, 47')_7]
T =l?]*['(r)J "laa(rz, or)]

/! o o Aa—” A @y | 2‘“" 4d2 - Bo-13

=10 / <& . + A, 4 a” 4z 44“2 Doz

0 4 l 4,3 ﬂ" 4” T A3 44_?& Al s3
7 ,




. - vhere the elementsai, area;j(s) , the standard forms of the precession
transformation elements evaluated at 75 .

The44;j are obtained from their definition as follows:
L Ri(BraT)E Rij(78) + A@iil4T;75)
Aaik.; (AT, Tz) = Qii(7 co7)-aii(78)
= dijr dis /fafar)f- Zrita ro7)% diim ﬂﬂ‘)
-‘éu -21.:7' 521'473 - z,,,;—-?‘
= a.,., Aff-d,,,/[Z A7+ -Af2)
#8S (378%) 7+ 375 872 por )
Ayl +r R D] + 38 T

1]

wer Z2o7 Z & EBIT+0TY) and 72 (%7 » Tartefor)

14 0 o
i) = Al rajix +di x? + 2l 7

The expanded forms for&kss anddals are given in the body of this report u.mier
.4.1 1. PREC




_r . Appendix 2. Derivation of Triaxial Lunar Oblateness Terms in Base Date System

Let B\,be vehicle position relative to moon's center
dpmbe element of lunar mass
¥ be position of £m relative to moon's center
¥’ be universal gravitation constant
M be total mass of moon

Then

' VI-'I'-'-’ lunar 'poténtigl, T
= "f S Are — |
=-¢' L |, 2r:Fm r
‘ S i : , ‘
= —y! dr R _ | F 2F RM ‘
'4 M > [/7‘ Rr 2 R4? ( ]
':‘-3 -—L 17 rédn o 4 , Fr A ‘

where [V,,], the 1unar nblateness dyadic 1s independent of vehicle position , ;
~and may be written in terms of lunar consta.nts in a princlple lunar axis ‘ ?
coordinate system ast’ :

SR . o o ] |
- [V"JM: -] 9  =E&A-c o



where A = f;q dn(V?+2 ) = principal moment of inertia on XM
B =g, an(x*+2*) = principal moment of inertia on 9,
c -j AM (y *Xg) principal moment of inertia on 2,
The (attractive) force on the vehicle due to the oblataness portion

of the 1nm:r potential is ;f‘

-

F‘= -V -'—J'ze, ,eq-[V] /e,.,}

e

v’

"-z Yo )em.[m] B vﬁ % f»J}

Now L
v/ A’M-«é/ —:—5,6., \7/?,, = —5Kuy ¢ ,’;’: = A’;"’; A’;
V{kn CV] Rp,}s V{/Pﬂo 0 Zx- oo _ .?:’f?
, T Y

w,xn # e % v s 2o

‘= 21/,,)(,,,,\/;, fz/,ez)f,)?v 1‘2143?,, En

z [V;f] 2

-

where /?,y was written in the cartesian aystem in which [V_]ls diagona.l. Thus F4
: becomos

A =-—-J-7 y P [V] iy *7‘55’"] &

where )54 1s assumed to be written in the same base system as[FiJ). Since kn is _
the resu}t of the trajectory calculation, it will be available in the base date

2 Zg system. It is therefore necessary to writefy#]in that system. This
may be done by the similarity transformation camposed of precession, nutation
and libratien:

[h], =[aI T, B 31 AT

34




.

N
1

i

\ ‘ | | 7 The values of 3’ A, B, C employed are those given in reference l, pe 79-
' 3"'0667/X/0’ KM/ ks - Sec?

A= 0.F874¢ )(/4‘7 kG ~kps?

B=086746 x 1077 f - g3g2

c 0. 88801 X10% A’q ~4m%

- The values of A, B, C, above agree withIA_Z" and Z; given in
reference 8, p. 7=2.

ST




Appendix 3. Alternate Subroutine DATE

The following equations will accept a calander launch date and time
and produce the required 77, 7 ,47 andd-dspfor launch dates from A.D. 1950
to 2000. The inputs and outputs are identical to those described under DATE,
Section Rele242 except that instead of DAYS, the following two quantities are
inputs:

Dr - = day of mongh
/‘7.; = month of year.

For exa;l;ple, launch on January 30 1963 at 2:30 P. M would be :anut as NYEARP
1963.0 :== 1.0,0¢ = 30.0, HRS = 14.0, HMIN = 30 0 ‘

(1) dg- 4( integral number of days from 0.0 of launch date to base date ’
o counting launch day but not base day.

= 3¢5 + A ~(pe-1)-1P(8) -~
vhere X = (WysARP -/748)/; 0 rd.0/
Bz 30 608 Mp - 32 443

3// G [} -TP(A)] < 8.001 @nd 17¢<3
0 2Zperwise: } .

J’ (714 "fl)f#~m4 5
O/ Me 2.5

(2) ta-tl = time from launch to base date ‘,v in hours
= 24.0 (ds-Le )- HS - é’cz& Sec

. 36 oo
GY A7 = (Z-22) ~(22-E2)
- (Z4.0) (36.:’2::")
= time from base date to time of traaeetory in Julian centuries of
; . 36525 days. |
) TE= FELO(WYERP-,945)F P )
F6525.0 E

= Julian centuries from 070 Jan. 1, 1950 to base date
5) 7= 73 r07 L

©) (d-ddso)~ 3652507




’ ‘ . ' ' . . s dad T \E
T |
| 3.0. (__oooaDINAfE TRANSFORMATTONS, PHASE TI }
' o  Ce I. Smith  ofe Jo Wikt o oc im‘gcl

P37~ Sf )af.d, CS_u... Uc,q. l?‘ﬂ—lC te
3.1, Precession Matrix 4, L :

The precession matrix A transforms from a coordinate system dei‘lned
by a mean equator and equinox of date to a coordinate system defined by the
mean equator and equinox of base date., References 1, 3, and 4 give both
exact and approximate formlations for the elements o.f 4. Under Phase I,
these approximate formmlae have been programmed in single precision, For
Phase II, a double precision program for these approximations is being
written. To test the accuracy of the approximate formilation, the exact :
equations as given below will be written in double precision and a comparison
will be made with the double precision approximations, If the results com- -
pare to ten places in a series of computations to be specified later, then
the approximate eqQuations will be accepted for use in the hlgh-preclslon
program,

Let %p= positlon components at epoch in the mean coord:.nate system-
s of date;

'y 1960™ pos:Ltmn comonents in the mean coordinate system of 1950.0-
A= desired position components in the mean base date systan;

A(f)= transformation ﬁ'om the 1950.0 mean system to the mean
system of base date;-

A(b)- transformatian from the 1950.0 mean system to the mean
system of epoch,

Yo = A (_fa,) ¥1q50 | ; 1) |

WJ?D‘?A (o) 41950 | (2)

Since the A matrix. 1s orthogonafl, 11; inverse may be replace by its transpose,
so that

; #5 AT )A (®) %o . - (3)

The following fornmlae are taken from Re.f. l. Matrz.x elements O ; if are
given by: o .




a,;: - 6,,) f‘,s”‘é*— COSJ‘:Coséc‘oé e.
aial-; Siu fo C’oéé‘f' Cosf,s,q 3, cos e

g CosS, siNO

o .
aai = -Cos jo 5"\'2_‘ SIIJ iCOS&CO\S
cos jo cos 3" s 5, S,,J} cosO
= - 8N j’o SId 6.

Xyy : - cosé_m»/e
s . e
a'ée { 6’“}5‘611\‘
= (=4
Qg = COS

(L)

The angﬁlarargumenurnfm mtion (4) are obtained from the polynomials
'300 : 0% 640 276 94T + 0838888 x10 “r2+0° 497 2 x10 T3

| - -
3= 0% 640276 94 T + 0303 611 11 X107 1% +0° 8333 X 10
6

(5)

where T is measnradin Julian centuries of 36,525 days from January 1,0, 1950,

A tabulation of base dates in Julian centuries from 1950 to 1986 is given in
Appendix A, pos

The precise velocity transformation is obtained by differentiating
Equation (3): :

‘ 48 ] A(»ré)A‘r(o) 1:D N [A ('fs) A{(D) + A (Ta)A'f(D)J 5 )
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st
- 0% 56 749 44T - ©o? 116 3333 x45° 720" 11588 x15*13

1
i
i
H
}
H
t
H
H

)




Elements of the dlfferentiated matrlces are obtained by operating on

Equations (L) and (5):
é.“‘-,“—Cosj 6:..)3\-&6.,)3’ cos}(‘.ose]f \
= 6ulf CO6é+co\$j .s:dé.ﬁose]}

= co.s.‘f co.sé,s:de]g

!:COSfCaSé quf smé‘co‘se]f

_[s»lf su/;_- e.o.sf Co&écw e] 3
"[c.o.sf s:dé&de] e

a,,* ~[swsme] £+ [ccs §,cos6] & )

dei 3 [s:dj .SI,J}— COJ.f; c&écos 9] j; | \
~[cosf cwé- st" 6:&1},“‘ 9] }

-l—[s:;lf cos}sme]e |

_— [smf cos;‘ + co.sj s:dé‘cos 9] j’ 7

-[cos.f Snlé,-)»\sudj 06533069]}
Esnf.f \sma.,sme_]e )

Gos = ~[cosfoma] L- [s,gf., cose] &
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[,suj_,}sme]é- [cos é_co.s ele
)

s = - [cosasm e];— [6:M3e.o.s e] e

S g

= - [J»l 9 -

) o (7¢)

B | R B
B j o 640 276 a4 +1° 67]]76 X107 + 154926 x16¥7*
A. . - !
}:. &% 640 276 94 +o éyeea 22 x1o1 +1° !‘H (FELY T2
n'..’- . a‘.
G- O.656 749 44 - 05236666 66 X16°T-0" 346 6 x164 »r‘

(8)

i Iy approx t'e elements are used for the precession
matrix [A] ; and the matrix :[&] is assumed zero,

3.2 Nutation Matrix N.

Nutation in longitude and obliquity are described by the N métrix,

the elements of which are:

: co.sglp ]J = SI'ISIPCOSE

Nea—COS{?f/ COSE CoSE +SINE SINE 7

”‘a:‘ S § Y. cos €

- - cos
N smg'lsn.lé v : N23~cosslfcosé SINE ~ SiId€é € :

N;, = s.JSysme

”32‘ c'.osg'(fnsnlé cose -CO.Seque

S E+Co~$6co~$6
,\I&-co.s&ysme i

(9)




For Phase I, an appronmation to this matrix is employed:
: [
1i . _J‘wCosg —5]’)5“’6

g ,,[_é- ’ Sé ~ 1
e T

- (10)
where, in Bquations (9) and (10), |
{y = mtation in longitude;
S_e = mutation in obliquity;
€ = mean obliquity;
€= &€+8§e = true obliguity.

In Phase I, the nutation in longitude is computed from'
2 | : "
= i a;: (1)sile,
it

and the mntation in obliQni‘by ;f,ifom

15 ,
fe=2 bicosy,
i1 = (12)

where the arguments 9 and ¢ are various combinations of the follow-
ing angles-

L) = longitude of the mean ascending node of the lunar orbit on the
ecliptic, measnred'from the mean equinox of date;

. « = mean 1ongj.h1de of the moon, measured in the ecliptic from the
.7 mean.equinox of date to the mean ascending node of the lunar
orbit, and then along the orbit;

e " = mean longitude of the lunar perigee, measured in the same
manner as s

L = mean longltude of the sun; .

mean longitude of the solar perigee,

(1)




The form of the mutation matrix represented by Bquations (10), (11) and
(12) have been programmed in single precision from the notes of J, Bellantoni.
Double precision programming of this transformation is now being done.

More accurate forms of S and S‘e - are described in Ref, l. ,
Equations for these descriptions are given here for the purpose of obtaining
a double pre }smn program to be compared with the simpler, less accurate
versions of oY and §€ described above, More terms are included in
the more accurate forms, and the arguments of the sine and cosine functions
are com‘m.nations of different angles. In compact notation, E

6
| £y=2.a;(«)sme,; ‘
R | (B)
ge = b‘; (f) Cos P
‘;=j_ ¢k‘ (1)4)
The sine and cosine arguments are combinations of

£) = longitude of the mean ascending nmode of the lunar orbit on
~ the ecliptic, measured from the mean equinox of date;

=({-L = the mean elongation of the moon from the sun; -
(- = the mean Jlongation of the moon ffém the lunar perigee;

L~ = the mean elongation of the sun from the solar perigee;

z (-Q = the mean elongation of the 1 moon from the ascending node

of the lunar orbit.

For Phase II thege argunents are derived by updating the equa.tions
in the references from epoch 1900 to epoch 1950 and then combining the appro-
priate angles as shown above, To update, the var:.ables are

d= 18,262.5 ephemezg‘.s days |
1 = 0.5 Julian centuries

Making these substitutionsé

f=215° 531 462 +13° 064 992 466(& F 0% 009 19277

+ 0% 000 0144 T3 (15)-

K ;mnml




Lt
ttttttt

1 353 coo 670 +0°988 60026694 - 02000149 T2
-0%000 0033 T3
Fz &2°%264 1403 + 13° 229350 499 0d - o8 003 211 T2
' ~ —0% oo 0003 TY |
D= 114 294 eaxt; + 12° 110 749 1%14& o* 00143{""
"~ ¢oloooool 9 T¥

.Q_- 12° iia Baa4 - of 052 953 922 2d +0°% oo2 o;7é1"’""

‘ -I-o.. o000 ool 24 1’\3

Additionally, t.he mean obliquity, € 9 ‘is given by‘
€= a3° 44{737 4-0%013012 51 - O% 000 0ot 64 T2
+0°% 000 000 \63 T3

(16)

"'.‘«(17) ,
- s

a9

(20)

COefflcients and argnments for Equations (13) and (1L4) appear in Tables 1

and 2 respectively, .




K

~ oo

10
11
12

13
1k

15

16

17

18
o

20

o
22

23

2l
25

26

_27,

28

B

Q
2
"2l +o2F +0)
2g-2F

28 +2F-2D+ )

2L +2F+2Q
£- (-D

 EF-ZD+eQ

L

L'reF-2pven
~L'vref-2p+20)

SF-20+K)

24-2D

2F-2D
ag
L+Q

el'veF-2Dp+20

‘Vf'-i-ﬂ;

-el+2p+0)

-R'+2F-2D+5)
eL-2p+0

L+2F-2D+02
A-p

eF+en
L
er+Q

Lrere2

X:ani_

TABLE 1

NUTATION IN LONGITUDE

-hr.8921
0.5800 -
0,013

. 0,0028

 -0,001
~-0,0008
-=0,0006

0.3l99

-0,138
0,05%94

0,034k

0,013

. ~0,0058
0.00LL

- -0,0042

E -0'. 00 28

-0.001k

-0.001Y

0.001

0.0008
~=0.008

-0.5658
~0.188
-0.0950
=0.0725
- =0.,0lak

a,; (r)
Degrees
-0.0L4825

-0.00036
"O ® 00086

- +0.00033
_ =0.0001

+0,00003

-0.00003

+0,00003

‘0_0 00006 ‘
+0,00003
-0,0001

X
+0.00006 X

X X X i X

S oFEe Mo

Note. 1
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'TABLE 1 (CONTINUED)

. NUTATION IN LONGITUDE

e; a; (7) ~ Note 1

Degrees

. ep Y X
4O . 0.016
—1.4,.(2 , : "00016

-L+2F +2p +2Q | ~0.014

[+2F+_Q A i 0,012
2E+2D+20 -0.0089
28 0.0078
LrafF-2pva 0.0072
efL +eF+ad . -0.0072

LrefF+Q o 0.0053

-Ly2p+2 - 040039
£-2p+0 0,003

~-L+r2F+20+Q | -0.003

Lel'-2D - =0.002
L'+2F e 0.002
L+2p o 0,002
2D+ T -0.002
~L'v2fF+e -0.002

L+eFrepte . =0.002
el +eF-2p +2x2 0,002
-2p+Q . =0,001
2F+ab+0 ~0.001

1.:_'_ 25-_{. ?.D +0 ‘ 0.001




S
5

57

59
60
61

62

63

6L
65

67
68

69

,6‘:

D

2'-ep.

2-2"
AL-eF

20 +2F+0) B

L+er
A L'
A-R'+ 2F+20

C a2+
-L+er-2D+0)

ef+n

-'-AraFeopt2
-1'+2F+an+e_f_2.;;,

2+eQ

Led'voF s2Q

3L +eFr+reQ

TARLE 1 (CONTINUED)

NUTATION IN LONGITUDE

a; (f)

" Degrees

Noie 1
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NV BN WV EFW N

5

5 REE KE

17
18

21
22
23
2l

B8R

29
30

-2l vef Q"
-2 +2F-2p +)
~2L+aFtef)
2F-2D+2Q .
L'vef-epteQ
-L'+2F-épre
2F-2D+0
L' -

ee+eF-2pran

-RsQ

el +ep+ )
-L reF-ep+f
el-2p+02
X'reF-2n+

eF+2f)
eF+Q
Rter re0
- L yeFre2
L+
- L40

-L ver+2p 1202

Lrer+Q
eF+ep +e 2
L+er-20+eQd

ai-&—eﬂ-é{?_,
~LyerreQ
~4yep+Q)

L-e0+Q

TABLE 2
—————tean

NUTATION IN OBLIQUITY

B (7)

. 25.58h
-0.251"

~0,0087:

© 0,0006

0.0006

0,0599
"~0.026

-0.018.
0.002 :

0.002

0.001 .

' 0.0008?
-~ 0,0008
~0.,0006

~0,0006-

0.0508

0,031k

SN -0.01L
. -0,0086

0.0083

0.0061-

- Degrees

0.006l

0.0039 _

-0,0031
0.0031

-0,0028

-0,002

0.002 )

k7

+ 0,0025

+0,000L X T

-0,00081
-0,0002 X T
+0,00008 X

-0.0001 X T

-0.00003 x T

Note 1

x
-

et
-3




n
32

33

1

35

37
38
39

TABLE 2 (CONTINUED)

NUTATION IN OBLIQUITY

¢L

- A+eF W-F 2D+

2'rersen
e+
~A'yerten
LierrepseQ

oL +2F*c?1>+enlk
2D+

eF+a2p+ Q)

L+2F - 2D+
2L+2F+0Q

Note 1: Multiply all by by 407

& (7) , Note 1
Degrees

0.001

=0,0008

0,0008

© 0.0008
- '0,0008
. =0.0006

0.0008
0.0008
-0.0008
O¢0006




3.3, Libration Matrix M.

~ The libration transformetion is employed to determine the orienta-
tion of the moon with respect to the earth, thereby permitting a point on the
moon's surface to be expressed in base date inertial coordinates, or permitt-

ing vehicle coordinates with xee‘;(zgi); to the earth to be expressed in selono-~

graphic coordinates. BEquations give the elements of the M matrix which
transforms to a selenocentric coordinate system from a system based on the
_ true equator and equinox of date, From Ref, L: ~ o ' :

M, = cosNcosA -siNQ 'sinAcosi
Mag= SIN Q' cosh 4—;05(2'&.4/\_ cos 4
Mgy = SINA SINL ‘

‘Mia= - COSQ'SMA = ;:dQICQsAcQ; i -
’ L 2 ey
Mpp= - siNY s +cosQ COS‘A_.\,‘CQS:A | |

Mza= cosAsmwi:

: o,
My3 = sidf SIdL
M;zz* ~cosQsmi

- 'M_,,s =CcosL

The arguments of the trigonometric functions in (21) are obtained froms -
S cosk = cos(ﬂ +a-+$y/)sme sm(T+p)+ cose cos(:!:-f-{O)l _ o<i<§d :

) . o ! T
Qs sl (Qeody)sud (Trplesedy ~FBeE

S SINAT -5.M(Q+¢+$V)‘s‘\;déc$c_£

CoSA =-Si (9415’45”?)5(}1Q'Co5 €

| E ey
-cos(Q+r+fyleosQ, ocaces ‘

A =k A + (C+ 'c‘)-»(,Q +¢) |

( -z +&€ , .




‘ In Ref. 3, the following values é.re given for 3)(0 I,

osiINI=-0%030 2977 7\3'/»)8_4-0 oia 8777 5/»)( +eu))
-0°% 003 o((((sw(ea,fea)

T= -o oos 333 sidq + O° oissaessm
+ O. oo.{SNJEu)
P=-0% 029 722 2 eas +o0%010 2777 cos(: yew)

- 0% o003 oS((.fcos (aa-rau))
I 1° .(3{ |

where
| : 2180549013 + ia?os4 11ad
': 368° 00q 06y + 0% 985 €00 £d (2k)
D = 19¢° j4S 632 + 0° 164356 ¢6d -

= ~. Derivatives for th&”elemnts Of (21) are also ven in Ref., (3). I m
. : these quantities are: gl (3) Il sSummary,

/;\,"? ( SINA cosQ -cosAsm.Q cos,«.)A

-

M - ('\SNA SHJQ +co.sAC06Q COSL)A
7 (cosAsmi) A

Me ( cosA cos)’ +\$lrJASMQ cosdi A (25)

Meé‘ ( cosAsinQY - .SNA cos0) Cos;)A
Mes © (_'S“AA‘S"J“)EA?

. e -

Mag® Mye™ My =0

_,(23)'

S S




A= -‘cogiﬂ s+ 5Y) SINE (.é 4—5',“)
sidicosa

q:= e 266 170 762 (16 ). o.124 934 71.(1&“)1’ ﬁnomd.s/\ssc.
O =-o. 106 969 843 & (10 ’} +0,230 1835 29 (10 “)‘r .eoomlc/cfc.
z'* = -o. .13'3 Key 294 6 (10°7) cos

+o (eq 4‘!4- o6z (16 12) cosgq' o | | AR
+o, s’yq 473 184 (:Lo -") cos eu) fomm/.s s-gc | o €26)

o = -0.£20 642 141 (10 7)cos
+0,181 177 445 1 (1577) cos (3 + 20) |
-o,‘io.é 408 785°¢ (1077) Coé(zu)-fea) 64014,«/6/650.

Ref:.?_ nts in these expressions can be made by using the more accurat.e values

é from Section 3.2, and .by using the more precise values of
Q, Q and é Development of these refinements are to be postponed
until the investigatlons of the A and N matrices are completed.

3.4, Greemwich Hour Angle Cc@utation

4s given in Ref. 3, GHA is oomputed from:

CP('r) (’Y) (1 ) + g,( | | ’(275

where

CP (’f) 1o00% 07\(542 6o + 9q. 8{6 473 460 (ibi)a
+2° Qoi S(io u)a%.,.wt (Mobééo ) o<0ra (4) Z 2_( (28)'

D= 0. 004 178 074 17 \mscezs\yldsc
1+ 521 (10‘13)4

A*:S‘l/co\se (29)




: Refinements in OT)("' ) may be made by employmg the more accurate
values of S yl and € from Section 3.2.

3.5. Computation Program .

Emphasis will be plat;ed on i‘irst dgtermimng the precision provided

bx the A and N matrices before proceeding to A, N, M, My, and the inverses, In
this regard, the A and N matrices employed in Phase I are now being programmed
- in double precision., These same matrices will be re-programmed in double pre-

cision using the equations contained in this report. A comparison will be made .
between the results of the two programs to determine at what significant figure

a discrepancy occurs, If the discrepancy arises beyond the ninth significant
figure, then the Phase I equations in double precision are adequate for Phase
II. If the discrepancy occurs before the ninth, sign:l.ficant figure, then the-
more accurate equa.tlons are to be used. S _
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" where Ts"" base date previous to '(3 3

Appendix A: REDUCTION FROM CIVIL DATE TO JULIAN CENTURTES

, . The transformations described previously employ Julian centuries
and mean solar days as unmits of time, each day containing 86,400 mean solar

seconds, In the ephemerides to be empioyed with the Orbit Determination Pro-
gram, an inertial coordinate system is established at base dates ob at

the center of a two-year file of planetary coordinates. Copsequently, Of,
Jamuary 1 of -any year may be chosen as a base date, the ¢hoice being a func- -
tion of the dates over which a particular mission is to be analyzed, Since
the transfermations are computed from a base epoch of 1950.0, it is necessary

. to convert from a given civil date to mean solar days and Julian centuries
measured from 1950.0. Table -l gives accumilated days and Julian centuries __
4rom the base epoch to the base date for the years 1950 to 1986, The accunmlated

Julian centuries .are tabulated in double precigion.

: Conversion from civil date to Julian centuries is computed for
time after the base date from. - SR T |

- =Ty + 1{d»+‘£'+ﬁm y__S }

3“?; 24 1440 ~ 8e 400

where . Tg = base date in Julian centuries past 1950.0;
- d = days from base date; = :

4 = hours from midnight

/= minutes of the hour;

S = seconds of the mimte, -

8o that the accumilated time from 1950,0 may be expressed as L

4‘:*&M{W" ] |

I.f time relét.ive to the base date is required, ,A( may be computed directly
from Equation (A-1) if the desired civil date occurs after Ty o However, if
the civil date occurs before Tg , the relative time AT/  is computed
from S ? ' : ' B

'A'f‘lé (T~ T) 'A{ |

A.r'a tim _:z"ela'bive to ‘rs .

(a-3)




TABLE A-1

" BASE DATES IN JULIAN CENTURIES FROM 1950,0

1985
6

# Leap Year

Days Acemmlated From

19500 to Oh Janua.ry 1

365 :
730 -
1096
1h61
1826
2191
257
2922
3287
3652
Lo18
1383 .
7k 8
5113
5479
sshly
6209
6574 - -
69l
7305
7670
8035
- 8LOL
8766 -
9131
9li96
9862
Slo227
10592
10957
11323
11688
12053
1238
1278k
1319

55

Julian Contnrles Accumlated
From 1950.0 to oh Janna;ry 1

0.000 000 000 000 000 O

0.009 993 155 373 032 2

0.015 986 310 7b6 06 3

0,030 006 8Lk 626 967 8
0.0L4O 000 000 000 000 O
0.0l9 993 155 373 o
0.059 986 310 746 06
0.070- 006 8Lk 626 967
0.080 000 000 000 ooo
0.089 993 155 373 0
0.099 986 310 7H6
0.110 006 8LL 626 ¢
0.120 000 000 Q00
0.129 993 155 373 (
0.139 986 310 75
0.150 006 8Lk 626
0.160 000 000
0.169 993 155 37
0,179 986 310
0.190 006 8Ll
0.200 000 000
0.209 993 155 37
0,219 986 310 7l
0.230 006 8lly 6
0,240 000 000 000 -
0.2l9 993 155 3
0,259 986 310 7
0.270 006 8Lk 6
0.280.000 000 000
0.289 993 155 3
0.299 986 310 7
0.310.006 84l 6
0.320 000 000
0.329 993 155
0.339 986 310
0.350 006 8Lk
0.360 000 000

R RS e REug eS8 Ys
§§§§§§§§§§§§§§§§§§§§°§“

33
g

&
\1&"‘(\)

2
43
78
0
22
3
78
)
2
4 3
8
0
2
3
8
) 0
2
3
8
0
2
3
8
0
2
3
-8
0
2
3
8
0

S
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[ o The raw data from' the R and R _system is related to the time
of the measurement at the ground station. These times are synchronized
ito WWV and include the time delay from WWV to the ground site. Since
all computations must be made on the seme time basis, propagation delay
{corrections from WWV to the site must be included in the computations.
Because only three stations are involved, these corrections can be
‘;precomputed and stored as program constants for each station location.

: ii;A:simple derivation of the time corrections is presented here
,ftogether with a brief analysis of the errors vhich occur in using. these
_‘equations.

4 Dcmuon of Time Delay

S Flrst, assume that the great circle erc between WWV and the
-'ground station has been determined. Figure. l'illustrates some of the
principle propagation paths that exist..

Essentially, the electromagne peth bounces between the
ionospheric maximum electron density layer and the earth's surface.
Experience has indicated that the: rie_top mode cannot exist for stations

~ separated by more than 4000 lkm: [3—;degreea, great circle are). One
limitation to the mumber of. hops which can be mede is the attenuation of
the signal at eacherefl“" fon. The ultimate limit occurs when the angle
between the- ray““t king the ioncsphere and the tangent to the ionosphere
becomes. large a’certain critical angle, after uhich the signal
passes throug s not reflected.

R _p;th&281gnal can be received at a station in both the one-
-~ hop and two-hop modes, the two-hop signal is delayed slightly and is
~" grestly attenuated by the additional number of imperfect reflections.
Thus, the mumber of effective hops, m , is determined from

____D-GC + i

ooo : (1)

uhere [ 'j indicates reduction to an ;
integer, GCD great circle distance (KM)

Fzgure 2 111ustrates the geometry employed to compnte the
subsequent total range from which the propagation time is readily computed.

- L

total great circle arc
number of hops, from (1)
reflectfng height
earth's. radius,




fooo Kmy, = MAXIMIM
: . ONE-HOPRANGE

Booo Km,= Maximim
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Now, by definition, the total path length 1s = em/’
the angle ©'= ©/m, and the propagation time ] 1‘: /% / c, c
being the velocity of 1light in the propagating medium.

/C ¢ 3m/°/c. { ,/7& +€s/"}sw ) +/)

¢ 4.2 Error Anslvsis | o o 2

4.2.1 Veloc‘ltx of Light

: ‘ Estlmating the error in using this equatlon can be based on
standard differential techniques. ,

: First, assume that- C » the velocity of propagation in the -
- medium, differas from the free space velocity. Then,

d¢ <
' o/t‘ - kt.é_c-—
c

T e TR T

Assuming that ¢ is at its m O_zm'um .e., ‘f -~ 46( milliseconds
and that & - ds in error by 1 x1 dt = 65X107" milliseconds, a *
negligible amount. o

4e2.2 H 'ggiggt of reflectinglayer

#

s




Example 1 v~
let m= .i c= 2?8 ooo K,q/o‘fC,} fg Kd/o /(M/ H=R50 /‘M-)

6= 6.1: dqggees, t = 3.6 milliseconds (equivalent to WWV to Rosman,
N.C. path), Then, ,

dt‘ 4 1'/(10 JGC/KM.

For a crltical height differential cf 100 m ‘between an assumed value
(in this’ eXample 350 KM) and the true value, the resulting error in time
is

4t = (4.4)(10 ")(ia-o) o, 44 mMitL sECoNDS

S

Exggple2
Lot o= »/ a e7acookm./5.sc 48£ 6370/.’»1///-\3{0/(/.1.6 .z.{,z.‘

t : 69,1 mllliseconds (equivalent to WWV to Woomera, Australia)
Then,

0/7‘-’ B 4 ¢ X.Zo 656//04.
dH '

In this case, t.he tim'lng error for an error of 100 KM in H 1s
1 1 mllliseconds.

For both examples, t.he error is seen to be significant.

biele 3 Summarz of Error Analzsig

The magnitudes of the numbers which arise from errors in H
might indicate a problem area. However, NASA's experience has been that
a millisecond ‘accuracy can be achieved. The explanation for this
apparent discrepancy between theory and observation is to be found: in
the mechanization of the timekeeping apparatus at the ground 31tes. :

-
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: .E"Each station hasv- a highly stable, atomic oscllletor-controlleé
clock which is synchronized to WWV. The long term stability of these

clocks act as a filter on the high frequency {periods of one day or less)

components of time shift due to the ionospheric height change. Thus, the
net effeet is the same as if the ionospheric height was averaged over the

day. Thus, choosing the value of H = 350 KM and assuming it to
constant is probably very reasonable. : , _

L 3 g;gg;ation of Great Circ;e Ar

: ?he calculatlon of the great circle arc between two stations
followa *the qusual laws of solid geometry. Define + North Latltude, -
South; all longitude are + east from Greenwich o to e,

1‘."‘ For *bwo stations A and B, compute the angle bet.ween the North
pole and the station- ,

a'= 90 — Lat (A)
b =90 — Lat (B)
2. Compute the polar angle between A and B,
P = Long (B) - I-éng (8) |
3. Solve for p, the Great Circle Arc,

')'- OOO‘ECa.sa; c.a.s“a su/a,smi:cosP

where o‘ ‘3 <1
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5:(?{,1'1!15 ADJUSTMENT AND AMBIGUITY
RESOLUTION OF MINIVAR INPUT DATA (

ik [543
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Trackiag data from both the Minitrack and Range and
Range Rate (RARR) systems include errors in the time ascribed
" to the various quantities measured by these systems approxi--
mately equal to the propagation time of the signals from the
vehicles to the ground station. 1In addition, the RARR measures
range with an ambiguity of approximately 11,000, 2750, or =
550 miles depending on the lowest range tome used. Both the
time adjustment and the ambiguity resolution require a know-
ledge of the approximate range to the vehicle and hence both.
corrections will be made as part of the MINIVAR program using
a nominal range computed from the most recent estimates of ‘
the state variables.

These errorsuand proposed corrections are described
below.‘_ o :

INITBACK Syst ;

The time ascribed to the directioa cosines measured
by the Minitrack system are in error by the propagation time
from the vehicle to the station., This error will be corrected
by using a nominal range computed by integrating the equations
of motion with the most recent estimate of the state variables
as the initial conditions. One value of nominal range will be
used to correct all data within a five second interval. Using
this single nominal range for five seconds of data causes a
timing error of less than 0.3 milliseconds, which is negligible.

-

5.2 'Range and Range Rate System

The RARR system data block includes 10 measured quan-
tities and a reference time, Tg, plus various data quality
indicators and four control digits. Each of the measured quan-
tities requires a time adjustment for the effects of propagation
in order to effect the correct correspondence between the
measurement and its associatéd time. The errors in angle, range
and range rate measured by the RARR system and the proposed
adjustnents are described below.

5.3 Angles

The antenna pointing angles recorded in a data block‘
are measured at the reference time, Tg. However these angles




" describe the position of the vehicle not at time, T4, but at
a time earlier than Tg by an interval equal to the propaga-
tion time from the vehicle to the station. However, since
the angle ‘data is relatively inaccurate it has been decided
that, at least for Phase I, the reference tine, Tgy will be
'used fnz ..... aagle data. .

is very acsu:ate and must be correctly tine-labeled to fnliy
reflect the available instrumentation accuracy. In addition,
the RARR system uses a periodic ‘modulation to measure range
and hence is subject to range ambiguities; these ambiguities
‘must be resolved not only to yield the correct range but also
" to accurately time label the range reading.

The range anbiguity can be reselved by integrating
the equations of motion to determine a nominal range, RI.
This same nominal range could be used to resolve the. ambigu~- -
ities in at least a minute of tracking data but the time :
corrections conputed using this nominal range would be ‘in )
error by an excessive amount. Computing a new nominal range
for _every five seconds of tracking data reduces this error
to.i}telerable value, The unambiguous range, Ry, is depend-
~ent on the lowest range time, f1, used and - is given by

'- 2f; :

The data block includes a control digit, Ci, which specifies
the lowest _range tone used to measure the range:

el } fL,,cgs‘
1, 2, 3 ’ 8 -
4, 5, 6 32 S
7, 8, 9 160 ’

The correct (unanbigaous) round trip pnnpagation time, TRT:
inciuding the effect of transponder delay, Tty is given by

CTRT = TP £ [3_1_] Ta - I7 o (2)
- - Ra R :

where Tp is the measured time interval between correspondiag

zero crossings of the transmitted and received signal (R in

the data block) and T, is the period of the lowest range tones
, ?I’ , - S

V'ég




The brackets, [:] , in Eq. 2 mean the integer portion of the
quotient RI/Ra The true range, R., is then given by

Re =

€ Tpr o (4)
»2 RT S | . , E

_ ggln terms of the round trip time," the tlme of the
~range meds enent, Tan, is

o T = Tsr‘TP -Z_u i L(5)

|
i

Using Eq.v2 this betomes

Tau"";-'fs FTIp -1 Ry Ta (6)

In order to insure that. small errors in Ry do not
cause the wrong number of periods of the lowest range tone to
be added to the indicated range a reasonableness check will

H be mades
ban o

o R-y
‘_;,‘,4).‘ | R )

If this inequality is not satisfied an appropr1ate change in
the integer IEI/RfI will be uade. . v

’ A

5.5 Range Rate Data

The range rate data requires only time adjusting,
However since the range rate data is actually a measure of the
change in range at two times, the actual time of the measure-
ment for an accelerating vehicle is unknown. However a
reasonably close time can be obtained. Furthermore, while
errors in range timing can be significant because of the high
velocities involved, errors in the time, :ascribed to the range
rate measurement will be negligible for:.all but the lowest
satellites near zenith and then only when the lowest data re-
cording rate is used. The time of the range rate measurement,
Tpys is taken to be '

Tnu=Ts/§_g‘I%_r_ | | (8)

, where Tp is the time required to count N cycles of bias plus
‘ doppler frequency (R in the data block). The counter setting,
, N, depends on the band being used and the data recording rate.
- This information is carried by the control digits C2 and C3;-
the counter settlng, N, is glven in the folloning table.
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c2 : - c3
T oz T 2
0 or 4 229263 14328
1 or 5 131007 | 8187
2 or 6 65503 4093
3or7 | 327510 | 2046

'Tﬁe?ringﬁfriti,ﬁ 1s is given by

R 5%: (: TE;) - | )

where f_  is the ﬁpélink frequency and K iéfthe bias frequency.
The up-fink frequency and the bias frequency are determined
‘fron C3 and are given in the following table:

o 2270.1328 MC' 500 KC,  S-band

-1 2270.9328 MC 500 KC S-band
2 2271.9328 MC = 500 KC  S-band
3 148.260 MC' . 30 KC VHF

The velocity of-propagatidn, C, has nbt.as yet been
selected and can be an input to the program
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: : This document describes the results of an investigation to
 determine the accuracy of the single and double precision mmerical sub-
routines which are standard for the IBM 7094 version of FORTRAN IV, The
" purpose of the investigation is to estimate the level of confidence to be
placed in the subroutines and to find the RMS error and maximm error for -
error analysis purposes. 4n meidental purpose was to prcvide expenence :
. in usxngths subroutines. : BEFSEE S

6.1 Hethod

Regardless of which numern.cal subroutine, F(x),is under in-
vestigaticn,the problem is the same? to compare the value given by the
subroutines to the exact value of the function at some argument, It was -~
decided to simplify the post-run analysis by inputting the exact value of =
the function and letting the computer evaluate the error. The program = = -
deck used in this analysis together with a program descnption and listing °
will be delivered to GSFC. , /;1 ,/W ﬂ’

6.2 Source of Tables

o : " For the square ‘root functn.on the exact values were obtained by : P
. ' hand calculation rounded to 17 significant figures for input to the com- SIS

puter. For sine and cosine, a 30 place table published at 1° intervals ' . ‘
was utilized after rounding to 17 places, For the exponential (¥ T
18 place table was used rounded to 17 places prior to input. For the natuzal
logarithm, tables to.16 deciml places were the best obtainable so that the” ..
inputted tables (between € “< 4 <€ ) are probably limiting the accuracy, - . ° \
For arctangent, the best tables availalle were 12 places which was not ;
sufficiently accuraté for use so that, instead of arctan x, arctan [(sin
/cos x)] was evaluated since the exact answer ( % mod 7 5 was accurately
known (- was obtained to 20 places from Burington). Thus, the errors in
the sine and cosine subroutines are confounded with the arctan subroutine
arr OrSo

6.3 Defimtlons

- It is convenien’b to use S to denote 1 in the last place for-
single precision evaluation and D to denote 1 in the last place for double .
_‘ preci sion evaluation.

To be rigorous, let F(Hl =M: 2" where e femed - ’

'We will callb the Mscale of F" md 2° the tumity", Also, § = 2° %/
and D = 255 are the exact deflnﬁ.'{ons of § and D,




' The error is defined as the computed value minus the exact
value, . Thererorg, the error is positive if F(x), the value yielded by
the su‘uroutlne, is larger than the exact value.

e For double precision oompu‘bation there are errors other than the
one made-in the subroutine calculation which are imtroduced into the program

' resulting in a somewhat larger total error than should occur. For single

precision x:ompu‘hations, these extra errors in F(x) are 8 orders of magnitude
below t.he error in the subroutine and are thus entirely neghg1b1e. ’

6.k Arguments

- In most cases, the arguments were exactly expressible in binary -
nota’oion so that there is no error due to computing the argument. For sine
and cosine, though, 1° = T /180 is transcendental and cannot be exactly.
expressed in binary notation so that there is an unavoidable error in F(x)
due to rounding off x, S
6.4,2 Exact Function

. ...+ In most cases, the exact valnes are known to sufficient places
so that the error :111 expressmg them in decimal is negligible, the exception
being log x for € <4<€ , However, the number, on being inputted, is
transformed to blnary and a certain error is made in doing so. - This error
is not known and cannot be eliminated from the total error.
6.5 Subroutines Tested
The double precision ‘subroutines used in the tests were
DATAN 2 DS, DLOG, DSIN, DSQB.T, DEXP
while the s:.ngle precision subrout:.nes used were
ATANZ GOS,ALOG,SIN Sm'l' EXP
6.5.1 Squa.re Reot
6.5.1.1 Single. Prec:.si.on

) The arguments are expressable exactly in binary nota'blon so
that there is no input error,

- The IEM writeup indicates that an iterated Newton-Raphson method
is used. It is a characteristic of this method that the error is always
positive, A characteristic negative error is caused by a truncation on the
final division in the subroutine. :




' The runs showed that the error was not continuous but, rather,
random both in sign and magnitude, Of the 97 cases run, 60% gave negative
 errors and 0% gave positive errors indicating that the iteration error is

well balanced with the truncation error, The maximum error was 1,08 (1 in
- the last place) which was perfectly satisfactory and the RMS error was .l11S
' which was also satisfactory. For a unity of 1,0 = 20, ,745 x 10~ =8 was the
maximum error and the RMS was 306 x 10°% (the subroutine speclfication was
was 1, x 10-9).

6 5.1.2 Double Precztsion

: The Same cases Wwere run using the double preclsion routine so
there was no input error. ‘ ,

The error was almost always negative (95 out of 97 times) which
indicates that roundoff was not a problem nor was the number of Newton-
Raphson iterations. The largest error in magnitude was 3D which includes .
all the errors discussed in Section 6.4.2 g8 well as the error in the sub-
routine itself, It is believed that the error which was random in magnitude,
was about equally caused by the various effects, The RMS value of the error
was found to be 1,13D which for a unity of 1.0 gave .626 x 107 a: g.nd
1.88 x 10" *® as maximum, The subroutine write-up lists 1.x 1072 < 2" which
is. proba.bly a msprint. , Lo : ‘

6. 5.2 Sine and Ccs:lne

Since the same routine is used for computing the sine and cosme, ,;
it is convenient to discuss them together. Two types of tests were made:
one in the region 0 to 90° at 1° intervals to determine accuracy and anothér:
_between + 13 +to test the reduction to the interval + Ja: '« The reduction -
was found satisfactory nthin the above range for both the single and double
preOlSZI.On.

Since the argument mst be in r’adian measure and the only tables
of the right accuracy were for degree measure, the arguments were mmltiples
of % . Thus there was an input error (see Section 6. L.1) for both the
single a.nd double precision cases of at most one bit,

6.5.2.1 Single Preclsion

The data were d:wided :mto 12 groups (6 for sine, 6 for cosine)
each group covering 15°, For each group, the RMS error was calculated and
the statistical input error removed from the output error. The resultant
RMS error for the sine subroutine itself was 1,10S. For the cosine, the
subroutine error was found to be 1,168. The subroutine error for either
sine or cosine can be taken as 1.13S or .82 x 102 (both are RMS values).
‘The subroutine write-up gives 1.0 x 1079 as the maximim error which is in
good .agreement with the empirically determined values above.
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The error in sine was always negative and in cosine almost
always positive but both were random in magnitude.

6.5.2.2 Double Precision

Here, in addition to the subroutine error, there are argument
errors (see Section 6.4.1) and errors in inputting the exact function (see |
Section 6.4.2). We assume that the former is at most one bit (at the
‘argument scale factor) and the latter one bit at the output scale factor,

~ Both are. taken to be uniformly distributed. o

~ 4s in Section 6. 5.2.1, the data were divided into 6 groups of
15 points and statistical corrections made for the argument error and the
exact function input mor. For the sine, the resultant RMS errqr was
found o be 2,075 x 10" *® and for the cosine 1,570 x 107% ,
eit.he:i' sine or cosine, the RMS subroutine error may be taken as I.BLO
x 10°*% or 3.32D., The write-up for the subroutine lists .7 x 10°3€ as the
maximm error and is about 2:1 lower than the empirically derjived value,

The error for sine was always negative whereas for cosine it
. was of random sign, The magnitude of the error was random,

6 0503 Logarithln »

Two types of runs were made: one to determine the accuracy of
the logarithm function and the second to ensure that the computation is
adequate over the reqnired Tange,

On the basis of about 60 runs of each logarithm subroutine i
(both single and double precision vers::.ons) s the subroutlnes were spot~-checked
over the range of arguments 1 x 10 ‘through 2.I x 104 and the errors were
found to be reasonable for the precision involved,

, There are three types of 1ogar1thms in current use differing in-
the base: ' binary (base 2), natural (base e = 2,718) and Briggs (base 10).
The same FORTRAN subroutine is capable of computing any of the three, the
difference being in an output transformation., Since the difference between
the subroutines is so minor, only one was tested, that one being the natural
logaritlm since tables of high accuracy are available,

The argumexrbs used for the LO runs checking accuracy wWere between‘

K: e-1 a.nd etl and were arranged so that there was no argument error made (as

dlscussed in Section 6.4.1)., The same 4O- arguments were used for the single
and double precision cases,

6.5.3.1 Single Precision

For this case, the RMS error found was U6l x 10°% as the error
in the subroutine itself which corresponds to about .619S which may be used
for error analysis purposes. The subroutine write-up lists 3 x 1078 as the
maximum error which is in agreemmt with the empmcal]y derived error of -

1.35 x 1078 (maximm). :
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The errors were random in magnitude but mainly positive,
6.5.3.2 Double Precision ‘

: For this case the exact values were only known to 16 decimal
places » that being the most accurate table available, so that an error of +
.5 x 10°%® 35 the maximum error in the exact value. There is also an error
of at mst 1.0 D made inputting the exact value, - : '

' ; Vhen the errors were added in an RHS sense and corrected
statist:.cally for the assumed uniformly distributed errors mentioned above,
the RMS error was found to be 1,37 D which, for a unity of 1.0, is .760 x 10-1é
and is close to .7 x 10" 16 yhich the subroutine write~up gives as the maximum
error, For error analysis purposes, 1.37 D may be used as the RMS error,

- 6.5.h Exponential

‘ As in the case of lg,ga:rithm, there are three exponential
functions in wide use: 2%, and e* , The FORTRAN subroutine is

input transformation. For this reason only one of the exponential functions”’ v
was checked out, namely e ¥ , for which accurate tables are available. S

o ' Tiro types of runs were made:  one set from which the accuracy -
of the subroutine can be determined and the second to detern%ngothat. er sub-
routine works for the range.of argumenh mer 1@}}0 e, expec

To test the routine over a 1arge range, about LO runs each were_ .
made of the single and double precision routines covering the range 1.9 x 10
s¥< 3.3 x10°, about 2 or 3 runs per decade of e* . The resulting runs
showed that e?® was being computed correctly by the single and double precision
subroutines over the range —27. < ¥ £ 15, which corresponds to the range
of e¥ given above, ) _

| _ For accuracy determnation, 25 runs were pla.nned covering the
range -.75 .2 A4 % ,75, corresponding to .5 ¢ e¥ s 2,0, The arguments for
all runs were chosen so that no argument error was made., The L0 runs designed
for testing the range of e"‘ were, later, also used .t‘or evaluatlng t.he accuracy.

A .S.h.l 8ingle Precis:.on

- The 25 runs were dlvided into two gronps of 12 runs, one group
having a unity of 1, and the other of 2, The RMS error of each group was ~ -
found, 882 x 1078 = 1,18)S for the first group and .94l x 1078 = ,631S for
the second., Thus, the assumption of the same relative error for the two groups
was doubtful. Instead, a tentative assumption was made that the subroutine ‘
method yields a different relative @rror for negative ¥ than for positive % .
The runs: -27. % ¥ € -1,0 and the runs: 1. £ 4 £ 15.wereused and
the RMS of the relative error was found to be 1.256 x 10 for negative % and




bh)y x 107 -8 for pos:.tlve ¥, corre8ponding to errors of about 1.10S and 565S, .
respectively. These results agree well with the values obtained from the
-0.75 ¢ A/— £ .75 range.

It is felt that (1.26 x 1078 )e or 1.183 should be used as
the RMS error for negative % and that (.6LL x 1072 )e¥ or .631S should be -
used for positive # . It was noted that all runs with positive % had negative
errors and all with negatlve 7 had posﬂive errors. :

.5.13.2 Double Precision

- Although there is no argument error or error in knowing the
exact value, as error in imputting the exact value (at most 1.0 D) is made
and was removed frem the data statistlcally '

. I‘he resulting RMS error was found to be .763D for negative
exponents and 2,565D for positive exponents from 25 runs in the =,75<4 £ ,75 -
range. There is evidence, however, that for large negative exponents, the
relative accuracy deteriorates by 10:1 as determined from the 27 runs in the
-27 ¢ 4 £ -1 range, Bwpirically, it was found that, for negative ¥ Lo
(o763 + o32)HID or (.59 + .251;;)10 %e¥ is a better a approximation for the
RMS error in e ¥ for negative % and 2,57D (or 1,99 x 1073*e% )} is a good
value of the RMS érror in e" for positive exponents. o

4 pcssible explanation for the ,32|#D term in the error is an”
error of .5 bit maximm in }2] (the result of an input multiplication in the
subroutine by log, e). Why there is no evidence of this error for pos1tive )
or for the single precismn cases is not known.

60505 AI‘C‘bangent

Since accurate tables of the arctangent are not available, the
function that was actually used for the test was arctan (sin ¥ / cos ¥ 5 :
Therefore errors in the sine and cosine subroutines were unavoidably confounded :
with those in the arctangent subroutine., The result of this is that we can
not separate the RMS error due to the arctan subroutine alone but can only :
find a total RMS error, including these and other errors as well. For single
precision, this total RMS ercor was found to be 1.38 x 10'3 radians and for
double precision, h.16 x 10™1® radians.

L was/also found that 3rd and lith quadrant angles are computed
as negative by the subroutine so th_at the output quadranting is B P4 arctan}t
£ ‘n’ . V
6. 5.6 Double Precision Inmput-Output Errors

As a by-product of the above investlgatlons an approximation
was obtained for the total error obtained by use of the standard FORTRAN IV .

- library subroutines for inputting and outputting double precision numbers,
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A total of 60 numbers of 17 decimal digits each were inputted into the machine
and then, in the course of the program, converted and printed out in decimal,
411 of the mubers were between ,5 and 1,0 in magnitude, The RMS error was }
0395 x 10°%€ = 712D, Assuming equal errars in the input and outpub sube - .
routines, we get 51D (RMS) in each, Assuming that output is good 30 (5D
(max) or 289D (RMS) then the input error would be .651D (RMS), The meccimm
error found was 1.0 x 10°%6 = 1 80D, - = ~. o
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7.1 Intrgduction

, To accurately sinulate the trajectory of an artif1c1a1
satellite or space probe, the deceleration from atmospherlc o .
‘drag must be considered. .In addition to the Earth, there is ' '
evidence that Mars, Venus and Jupiter have sufficiently dense )
atmospheres to affect the motion of a space vehicle.

Th1s paper discusses some problems involved in simu-
lating planetary atmospheres themselves, and the results of
making certain simplifying assumptions. The object of this
report is to come up with a recommendation for a method of
simulating atmospheric drag representing a conplexity commen-
snrate with the state of the art.

: It should be noted that the mission of the vehicle has
to be considered. There are three missions in which atmospheric
drag could play an important part. The first mission is a low
o : - eccentricity orbit about the Earth or another planet. The : ,
: . 7~ second mission is a planetary re-entry and the third is a fly- . °
: by orbit of the space vehicle. _The three cases will be referred .
to as the ‘orbiting ’ reentry and “fly-by"™ cases. : ;

7. 2 Diecussion
Te2.1 Deceleratlon

7.2.1.1 Continuum Flow
‘ ~ The usual formula (assuming continuous air) for the
magnitude of the acceleration from drag is

d o ) , ‘

P is the density of the atmosphere at the vehicle
L Vais the magnitude of the velocity of the vehicle with
respect to the atmosphere-
Cois the drag coefficient of the vehicle
S is the effective surface area presented by the vehlcle
mmis the mass of the vehicle

. where -




The quhﬁtity p “represents an acceleration and depending on
the choice of units for the varlables will have units in
ft/sec?, in cm/sec?, or "g's", and:will require conversion to

* the cononical unzts used in computation.

7.2;1.2 Free=lolecular Flow

As the atmosphere becomes more and more diffuse, the
mean free path (average distance between impacts of air
molecules)- increases until it exceeds the diameter of the ,
vehicle. - Figure 1 shows mean-free-path as a function of alti-
tude as obtaaned from U.S. Standard Atmosphere. When the mean
free path becomes this large, the collisions become two-body
collisions and the continuity of the air mass is no longer
applicable. The assumption of a diffuse ataosphere, where all
¢ollisions are two-body and the mean-free-path exceeds the di-

mension of the vehicle passing through, is called’ free molecular"

flow.

‘.:KetchUQ,has de:ived;'using the Maxweil-Blotzuéh Dis-
tr;Qation Law, the following formula for drag deceleration:

. :'(2)

where

R is the radius of the vehicle
is the mean free path _
2 is the average velocity of partlcles in the mediun

- Ketchum is uncertazn about the correctness of the
(Z+2~/4) term being in the equatlon (2) or whether a more
correct equation is

5,,,,,//’/45} e, L | "(3).’

From. figure (1), 1t will be seen that J  varies very -
rapidly with altitude so that the change from 2#£=A4
(where the transition from continuum- flow occurs) to R~ o.14
(where the correction becomes negligible) takes 8 short time.

7.2,1.3 Dtag.Difection

By deflnltion, the drag force acts opp051te to the di-

rection of the vehicle velocity with respect to the air. Section

7.2.4 describes the cakulation of the V5 vector in inertial co-
ordinates. By normalizing this vector, the direction in wh1ch
the drag force acts may be computed.

T3
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T.2.2 nass’of Ve&icle

For utmost generality, vehicle mass should be con-
sidered as variable with time. 1In the orbiting case or the
fly-by case, a step change in mass representing the separation

of a landing craft could be imagined. A long-term steady-state_r

'mass flow rate nould probably be small.

: = Por the reentry case, if the reentry vehicle is of

the heat-sink type, the mass would be constant. For an ablative
nose cone, the mass flow rate is a functxon of the drag. For
ballistic" uiasile applications, this mass change is usually
ignored. 1In any event, such changes in mass represent a small
error in the location of the 1mpact point.

T.2. 3 Surface Area

; The effective gurface area is not slmply the cross-

sectional area of the vehicle. The vehicle, in passing through
the air, produces a shock wave which skirts the missile and
makes the effective cross sectional area the area at a point
somewhat close to the nose. Since the shock wave changes with
air speed, so does the effective cross-sectional area. 1In
practice, S is made constant and any variation wlth speed is
included in the coefficzent of drag.

The above discussion ‘assumes that fhe angle of attack
of the vehicle is zero, i.e., that the velocity (relative to
the air mass) is in line with the vehicle longitudinal axis.

7.2.4 Air Speed

v Since the velocity of the vehicle is conpntatronally
‘available in an inertial coordinate system, the velocity of
the air mass in the same coordinate system is subtracted to
give the velocity with: .respect to the moving air mass; the
magnitude of this velocity is the air speed. A good first
approxiaation to the velocity of the air mass is given by as-
suming the alr mass to be rigidly attached to the rotatlng
planet.

’ A better approx1mat1on could be obtalned by adding

the wind velocity. The purely local effects have to be neg-
lected but the long term horizontal effects are known as a
function of position on the Earth's surface and altitude. To
take them into account, we would have to include direction
(independent of altitude but dependent on latitude and longi-
tude), magnitude (strongly dependent on altitude, less strongly
on latitude and least on longitude). The error made by neg-
lectrng Earth winds is about 1500 feet at impact for a typlcal
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ICBM mission. Note that winds are of importance only in the
lower atmosphere, nainly for the reentry case.,

T7.2.5 Drag Coefficient

The drag coefficient (Cp) is sometimes considered to
‘be constant but a much more accurate representatxon is to con-
- gider it to be a function of Mach number,' -

-

‘7 2 5. l Speed ef Sound

" The Hach nunber is defined as air speed (see section"g
7 2.4) divided by speed of sound. The speed of sound is a
function of altitude but can be easily computed from a stored
table by . a table look-up procedure using linear interpolation
between tabular values., A different table is used for each
planet. The Mach number is then computed by div1d1ng 1ntc the
air speed as previcusly conputed.

~As altitude increases, the atnosphere becomes rarified E
to the ‘point that speed of sound loses its physxcal significance.;;

_k7 2.5, 2 Accuracy of Drag Coefficient

, " One of the -ajor sources of inaccuracy in ‘the sinula-,
tion of drag is in the knowledge of the drag coefficient. The
‘data are obtained from wind tunnel measurements and tabulated
to about 1 part in 30. At best, then, the error is £ 1.7%

from truncation. The total error is believed to be more in the
order of £ 3% even at the tabulated points, |

- 7.2,5.3 Calculation of Drag Coefficient

In practice, Cp 1s tabulated for about 25 different
Mach numbers which are denser below Mach 2 than above and very
dense in the region around Mach 1, For intermediate values of.
M, linear interpolation is used.

7.3 At 'S heric nodels
7.3.1 Jupiter =

At the present time the concentration is on determining
the composition of Jupiter's atmosphere. It is considered pre-
mature to even begin to. consider denisty versus altitude at the
present time, :

-

' 7.3.2 Mars:

' The density versus altitude for Mars is fairly well »
agreed on to an altitude of about 30 km. Up to 80 km of altitude,
Schilling gives a value for density with a maximum uncertainty




of about 831 and a one-sigma uncertainty of about 3:1. The model
of Schilling is easily approximated by an exponential interpola-
tions the logarithm of density is stored in a table versus
altitude, linearly interpolated between tabulated values, and
then exponentiated. With a 7-value table of density and alti-

“ tude, a maximum error of 1.4% can be obtained for the Schill1ng
Model Il ﬂars atnosphere.

7.3, 3. Venus o

SR Becaute the surface of Venus is always obseured from R
v1ew, there is little agreement about the atmospheric model or -
composition within the cloud level (at about 30 km ‘in altitude).

At the point where the star Regulus was occulted in 1959 (100 km
in altitnde) fairly definite data exist. ,

Of the three theories of the model of the atnosphere o

(greenhouse, ‘aeolosphere and ionosphere) no one theory explains 1‘ 

all of the available information about Venus. At the present
time, there is no generally acceptable density versus altitude
curve for Venue.

1. 3.4° Earth S

The knouledge of the Earth's atnosphere is net conplete, o

but the known effects are far more complete than fer any of the
planets and represent an adequate model of the Earth's at-osphere
‘even at altitudes of 2000 km (about 6.6 million feet). It is .
convenient to separate the atmosphere into two parts, the lower:
atmosphere. and upper atmosphere with a separation at about 120 7
km (400,000 ft.). Drag in the lower atmosphere is large and a
vehicle entering it will usually be slowed down sufficiently to
be captured by the Earth. Thus, the lower atmosphere is primarily
of use in the re-entry case. The upper atmosphere is character-
ized by lower drag which would be significant mainly over long
time arcs which is characterized by an orbiting mission. 1In

case of re-entry or fly-by, the upper atmosphere could probably
be neglected. It is convenient to consider the two atmospheres
separately.f C . - -

7.3.4.1 Lower Atnosphere

An average model has been well established for the lower:-
.atlosphere. There are five sources for these data: U. S,
Standard  Atmosphere 1962; COSPAR International Reference Atmos-
phere 1959; ARDC Model Atmosphere 1956, Table 1 shows the
density deviation (in percent) of each of the others from the

S. Standard .as a function of altitude. It will be seen that,
except for Tropical Tables, there is good agreement between the
various tables at low altitudes. Note that the Standard and
’ International agree all the way to 120 km (400,000 feet).

%



There are seasonal var1ations in the lower atmosphere
and diurnal variations as well as latitude variations but these
are not sufficiently well documented. The only effect of omitting
them is that the impact point of the reentering body would be
slightly‘dlfferent. It was estimated in 1958 that the 1 sigma
- variation for a heat-sink type nose cone used in the ICBM appli-
Acation is about 0.5 nm. ,

R Speed of sound can llkewlse be obtained frem,the five
ﬂsources ‘given above but only in the range 0 to 90 km. Hawever,
for the U. S. Standard and the COSPAR International, values up
to 120 km. can be computed from absolute tenperature and meana
molecular . uerght -which are tabulated there.,' :

7.3.4.2 Upper Atmosphere
7.3.4.2.1 ‘Eleven Year Cycle '

An eleven year cycle in solar fihx (cerresponding to,ﬂg

the sunspot period of the Sun) has been found to lead to an upper

-atmosphere model with diurnal variations and with variations
due to solar flux (see Harris and Priester). R. Bryant (of
GSFC) has used density from this model to predict the orbit of
the Echo Satellite over an extensive perzod of tine thh excel-.
lent results. o ‘ . .

T7.3.4.2, 2 Sinulation of Bentity by Use of the Harris-Priester lodel

Roemer assuned the exosphere to start at 600 km and-
performed -a Fourier analysis below that altitude and assumed
isothermal conditions above. The resulting nunerical approxi-
mation was good to £2%. The resulting program- (wrltten by =

R. Devaney of GSFC) occupies 1530 words on the IBM 7094, Approxi-*‘

mately 1710 words of storage are needed for constants., Harris
indicated that the.start of the exosphere could be reduced to
400 km which would reduce the constants storage to 1450 words
but leave the program size unchanged at 1530 for a total of
2980 words. }

: In an attempt to shorten computation and: reduce storage
w1thout causing“a significant deterioration in accuracy, a simple
table look-up procedure was investigated. The result is a table
comprising 1074 words of storage. Density is stored at each
combination of 16 values of altitude, 13 values of local time
and 5 values of solar flux (the values of altitude, time, and
solar flux are also stored, adding 34 values). For a maximum
error of 2.7%, linear exponential 1nterpolatlon (in 3 dimensions)
is satisfactory. This maximum error can only be obtained if,
simultaneously, solar flux is high, local time is at 14 hours
and altitude is half-way between two tabulated values. The
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average arror would probably be below 1¥. The program size was
estimated from the equations as 645 for a total of 1900, after
adding: lﬁ% of the total for contingency.

7.3.4.2. 3 Latitude Variation

Ihere is evidence that there is no- varlatlon of the
model with- latitude, It has been suggested that the use of
zenith.. aﬁ’}e instead of local time as one of the parameters
mlght give more intuitively satisfying results. “Zenith angle®
~is the ‘angle subtended on the celestial sphere between the
vehiclée position and the Sun's position while the "local solar
time®™ 'is the difference in the rlght ascensions of the vehicle
and the San.~ S : »

The intuitive difficulty in using local time is that
at the Nerth or South Pole, there is no midnight and no noon,
local time being constant.‘ The zenith angle, for a vehicle 30°
above the ecliptic is 30° at noon (at mlnimum) and then in-
creases again. To y1e1d a cyclic function we would have to
arbitrarily have zenith negative before noon, going to -30° at
" noon, and £ .30° instantaneously after noon, “This discont1nuity
would not be satlsfactory.v

7.3, 4 2.4 Other Variations

‘There is evzdence of solar cycle varxations (and hence
atmospheric variations) having 27 days, 6 months and -1 year
cycles. No theoretical model exists for these effects and
whether they have corresponding diurnal variations, -as the 11
year cycle has is not known. The 27-day variation is not ex-
pected to be completed until mid-1964, the others after that.

7.3.95 -Altitude

Harris has suggested that the. geocentr1c altztude
above the oblate earth should be used for the Harris-Priester
Model. For the lower atnosphere, the same definition of alti—
tude should be used.

Fcr other plauets, geocentrlc altitude above an ellip-
soidalior spherical planet could be used,

7.3.6 lediun Velocity

The average velocity of partlcles in the medlum ( c )
is of importance only when the altitude is high enough so that
free molecular flow is valid. As was indicated in a previous
section, free molecular flow can be obtained,only for the Earth
since, for other planets, the atmospheres are not known to a
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high enough altitude. For the Earth, from Figure 1, we see that
free molecular flow occurs in the upper atmosphere for usual
vehicle dimensions. From equations I. 3.4-(1) and I. 2.6-(1)
of U. S. Standard Atnosphere L is found to ‘be- propbrt1ona1 toJE?

fff

-~ where T is absolute temperature -
‘ M is mean molecular weight

(4)

from whlch the medium telocity can be computed wzth values of

T and M from the Harris-Priester Model. The variation in

with local time and solar flux was -22% for altitudes below 500
km and £14%" for altitudes above 500 km. Therefore, were we to
approximate € by a function of altitude only, we would be
causing an error in drag of £22% which is not tolerable.

Thus, drag is linearly proport10na1 to both density and
medium velocity, both of which are functions of the same three
parameters (altitude, local time, and solar flux). It is o
natural then, for altitudes where free molecular flow pertalns,
to store the product of density and medium velocity (as a
function of the three parameters) 1nstead of both" density and
medium veloc1ty separately. ' v

7.4 Difficulties and Poss: le 501utions
7.4.1 Density Disgontinuity1Betneen Lower and Upper Atmospheres

The density at 120 km is fixed ‘independently of solar
flux and time of day in the Harris-Priester Model and is 34%
higher than the U, §. Standard Atmosphere. No other model for
the lower atmosphere gives a value close to it so that there .
is a discontinuity in density between the Harris-Priester
Model and all of the models of the lower atmosphere,

-#

7.4.2 Drag: Discontinuity Between Free Molecular and Continuum Flow‘

" Since the fornulas for drag are- dlfferent in the region
of free molecular flow and in the region of continuum flow, _even
- if they were to agree at one altitude (for a given %L and €& )
permitting a continuous transition from one formula to the other,
there would, for a different V5 (or d ) no longer be continuity
at the junction of the regions. ‘ ‘

A possible solution is to introduce a transition rqgion
in which we take a weighted average between the drag values"
computed by the two methods and gradually slide the weight from

unity for free-molecular and zero for continuum to unity for
continuum and zero for free molecular. A complication occurs in



-the transition region, sir’lce-a/=> table is needed for continuum
flow drag and a /O-E table for free molecular drag.

Although an altitude between 120 km and 130 km would
‘be a theoretically desirable one {(see figure 1) to transfer
from free molecular to continuum flow, the table duplication
would be trivial below 120 km. If we arbitrarily choose 100 km
to 120 km as the transition Tregion, we gain one other adVantage:
we can bridge the discontinuity between the lower and upper
atmospheres by using for the /ac table values cont1nuous with =
the Harris—?r1ester Model.

T.4. 3 Accuracy

‘From previous dlscussions, the computation of drag is
probably accurate to £5% in the Earth's lower atmosphere and is
‘less accurate in the upper atmosphere. For Mars, the knowledge
of drag is probably not as accurate as £10%‘and for Venus con-
siderably worse. Therefore, calculation of drag and. the
parameters composing it can always be computed in single pre-
cisxon -ithout degrading the precision of couputatlon. :

ecommendatlons for S;mulation

The statenents made below are recommendatlons for compu-
~tationm method and represent, in most cases, a comprom1se between
state-of-the-art and ease of computatxon. ‘

7.5.1 Loglc of the Drag Computation

On the basis of a control card option, programs and
tables will be included for computing drag over any combination
of the following: '

a) lower atmosphere Earth
‘b) upper atmosphere Earth
‘c) Mars
~d)  Venus

‘e) Jupiter

and appropriate gates"will'be set.

Dependlng on wh1ch reference system the vehicle is in
and the settings of the gates, a distance test will be made.
The distance to the center of the reference body is computed
and compared with center distances corresponding to altitudes
of 200 km, 1100 km, 80 km, 180 km, O km,

.



If ‘all tests fail, drag is computed as zero and exit.
1f any test passes, drag will be computed:s first compute the
geocentric. altitude; then, for the Earth, geocentric latitude
is computed together with the radius based on an oblate spherical
earth., I€f in any other reference system, compute geocentrie
- altitude u:ing a constant rad1us for each planet.

7.5.2 choice of Drag Equation

If option b) is chosen, and if ‘the altitude exceeds
100 km when the vehicle is in Earth reference, equation (3)
(rather than (2)) will be used.

-~ If option b) is not chosen, or if the vehicle is in
other than EBarth reference, or if option a) was among those
chosen and altitude is less than 120 km, use equation (1).

Note that'between 100 and 120 km when options a) and b) are ‘both.
chosen, then both computations are made together with the
transition function. :

’ Only those quantities which are requlred for the equa-~
tion’ being used hzther (1) or (3))are computed,

7. 5 3 Air Velocity

The velocity with respect to the air mass (‘7 is
computed from the inertial velocity by subtracting out the
velocity of the air mass with respect to the planet and the
velocity of the plart with respect to the coordinate systenm.
The latter comes from the ephemeris tape, the former is cal-'
culated. To calculate it, an assumption is made that'the air
mass is rigidly attached to the planet and rotating with the
planet. It is recommended that winds be neglected,

The magnitude of E; is the air speed and is used in”
the caloulatzon of Mach number (for the lower atmosphere). The
direction of the drag vector is compnted by assuming it to be -
~alignod with - . .

7. 5 4 Lower At-osphere Tables

‘ The independent var1ab1e used in the lower: atmosphere
tables is altitude; density and speed of sound are computed
from altitude. :

Three tables are stored for the Earth's lower atmosphere:
altitude, log density, speed of sound (about 50 values per
table). For a given value of altitude, a table look~up is per-
formed by linear interpolation in the log density and speed of
sound tables. Density is then computed by exponentiating log -
density. , : ' I S




. v , Three tables are stored for the Mars atmosphere ‘(about '
15 values péer table). Density and speed of sound are again
found by- ltnear exponential and linear interpolation against
altitude. :

Fur the Venus atmosphere, three tables are stored
(about 15 walues each) as above and, similarly, density and speed
of sound are. found by 1nterpolatron.

Spaoe nill be supplied for later inclusion of a Jupiter
‘atmosphere. ' ;

For the Earth, it is recommended that the U. S. Standard
Atmosphere beé used as the basis of the three tables. For Mars,
it is recommended that the Schilling “Mean® Model II atmosphere
be used (see page 9 of the reference report) until a better
table is available. No recommendation is made as to where to

- obtain a speed of sound table for uars or any of the tables
for Venus.- : ~

7.5, 5 Upper Atmosphere

The use of the Btrris«?riester model is recommended for
\ the upper atmosphere. The.- independent variables are three in
7 ‘ numbers, solar flux(s), local solar time ( tL ) and altitude (h)."
‘ The local solar time is computed from the difference between
the right ascensions of ‘the Sun and the vehicle. The solar flux .
is computed as an "inputted™ function of time-since-a-bagse- =
date (also ”inputted') Altitude has already been discussed. -

At 100 km and 120 km, 1og (r2) is stored for use
in the transition period. :

: o An altitude table is stored (16 values), a solar flux
table (5 values) and a time table (13 values). Then log of
(/>c ) is stored in a three dimensional array for each tabulated

- point, simultaneous 11near interpolation in. 3 dimensrons is used
to yield log (/0 g ). Exponentiation yields re e

S In order to form the 3 dimensional table of 5tored
values, PR and & are both needed. In the re{grenced document
by Harris and Priester, / is established but ¢ is not. It
is retommended that equatlon (4) (see section 7 3. 6) be used to
compute E S

7.5.6 Coefficient ‘of Drag

: lach number is computed from air speed and speed of sound
as in'section 7.5.3 and 7.5.4 respectively for any planet.’

e i e B i
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Mach number (M) is used as the independent variable and
the coefficient of drag (Cp) computed from it. Two tables are
stored M and Cp {each of 25 or 35 values) and linear interpolation
is used to find the Cp corresponding to a g1ven M, which may lie
betweeu tabular values,

, Each combination of 2 tables represents one particular
space vehicle. In order to avoid the inconvenience of inserting
these tables as input, 4 sets of tables will be available on the
program tape and one set will be chosen by an input card option.
The tables are independent of plant.

7.%5.7 Surface ‘Area

Two values of effective surface area are inputted: one
"~ for use in equation (3) for free molecular flow and one for use
in equation (1) for continuum flow,
7.5.8 Mass

Mass rates are not considered to be a part of the atmos-

pheric models. Schedules for changes in mass will be incorporated

1nto another routine of the Orbit Determinatlon Program.
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14.6 'f 48,000
20.4 67,000
29.0 95,000
33.5 110,000

48,8 160,000
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PER CENT DEVIATION FROM STANDARD
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.59

-3.13
4,77
15.0
31.2
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0

0
0
0
0

.16

-2.36

- -3.13
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-10.8

-35.0
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1961

»55

-.91 -

1.85°

1.68

2.36

.48

.10

.68

77
1.30
11

1.17

TABLE 1 - Percehtage Density Deviations at Various

Altitudes - .U, S, Standazxrd Atmosphere 1962
taken as reference values
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: The matrix operations of addition, mmltiplicatiom, subtractiom,
transposition ‘am:t;.gvaraim are carried out in the MINIVAR Program, Since -
a precision of 1 is desired throughout the program, those operatioms

- vwhich are susceptible to loss of precision mmst be examined. -

8. Analymis of Mstrix Qperatioms

It is clear that no precision is lost in transposition. Loss of
precision in matrix mmltiplication occurs for the same reason as in subtrac-
tions that is, it occurs if numbers of nearly equal magnitude are subtracted
during the course of the computation of the matrix product. The only remedy
for loss of precision in matrix addition, subtraction or mltiplication is
to perform these operations in double precision, since it is impessible teo o
know in advance exactly where in the computations a bad situation will arise,
It is understood that those situations which can be fareseen in advace, such

as the computation of 2 /r2- %o/iz3 have already been remedied by expansiom
in b 1 series or some equivalent action. The cases which are under cem~ -

sideraticn here are due to the more or less accidental groupings of mmbers.

during the course of the computations. C : o ,

. | | . fhe matrix ihversion operation is one which does lend itself to

' - remedial procedures which may be tried before resorting to increased preci- -

sion in the input quantitiese -~ : i

At present, matrix inversion in the Orbit Determination Program is

being managed by a standard SHARE routine which uses a Gauss-~Jordm pivotal

condensation technique in single precision, : : ‘

The only matrix which must be inverted in the program is the covar=
iance matrix of the observational errors, denoted by Y. It is highly probable
that this will never exceed L x I in dimensions3 even though the total mmber
of possible cbservables is much higher than L, not more than four will ever  ©
be used at any one time,. _

~ Considering the relatively small size of the Y matrix, there is no
reason to believe that the present share routine will not be sufficiently pre-
cise for this application, if done in double precision. However, it would be .
desirable to incorporate in the program a check in the inversion process, with -
an option for increasing its precision if necessary. The following paragraphs
describe the recommended check and the optional iterative processe

8.2 Precision Check on Matrix Inmversion

Iet Y be the matrix whose 1nverie is desired, and let f‘l be its

exact inverse, If an approximation to Y —, say B, is obtained by any means,
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the accnraoy of the approximation can be Judged by back miltiplication with
£ , | o

B)/ IT+eC

'hera eC - repreunts the error i.n the computation, and € is determined o %
requiﬁxg ,the’largest nan-zero elenent ef C to have unit nagzituda. -

8.3 M f ”_‘an Iteratin oncedurc

etobesufrid.entlymll,upmdtheonctmtﬁx R 1
inveminapaersniesasfollm . |

)/'” + B, +eY' ver Ve | | ; - |

choosing as a first approximajion the matrix Bo obtained by some as yet
unspecified method, Since is the exact inverse of Y, miltiplicatien
- of the rigat hand side of the a'bare equation by Y mst yield the idemtitys

(51-67’ +€7+ ))’ I

(teen o)y =-c

Now, if the above equatlm is poat-mltiplied by I in its expanded ferm,
the result is

-1 . _ E . - qi .
;)’i«,i‘:e)‘ﬂ.m = -—C [b '+e)’ 1,4— €Y, +]

Equat; iug equal, pmrs of € glves the following successive approximatlms
to Y2 :

“Yo.:t = Bo
-1
Yi = -CY,
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This formmlation can be put into a more compact form by letting ka Eé)’,'e .
When this substitution is made, the expansion for the true inverse is

VL - : - .
,f-;i‘y 2 B°+51+3&+..,4-5£4‘n' '

| , (1)
and thetbmtivc procedure for Qbﬁaining the B's is . |
e, N : |
B,:-CB, ; A | |
L - , | . (2)
By : -CB | | |
kL |
| )
where B, is the initial guess and where now
By-2=¢ &

itute the precision check (Eqe (3) and

' . o Equation”s‘(]_‘)‘, (2), and (3; ‘ E
ieh are suggested for use in the MINIVAR program.

iterative process (Eq. (2))-

It mst be realized, of course, that sooner or later in the itera~
tive process the accummlating round-off error will begin to wipe out the
additional precision which has been gained, When this point is reached the
iteration should be stoppeds _

8.1 Choice obr< l(at:iées Used for Test of Iterative Procedure

In order to test the efficiency of the proposed iterative procedure,
a set of matrices with a reputation for difficult inversion was chesen (Ref. 2).
This set is known as the class of Hilbert matrices H,, and the members of
this set are defined by : ) : ‘

‘ = e TR I R ISR A

The difficulty of inversion arises from the fact that the matrices approach
singularity as '~ increases, ' . o T
| Hm, it is possible to obtain analytic expressions for the

elements of the inverse matrix, so that an accurate estimate of the error
for any given approximation may be made, The inverse matrix, defined by

. | ‘rm! E is | :



' : ; . } . ‘;
A H,;i - (i) R (va— 1) (m+1 1) ,
SR (i+i- 1)[@ A (O T (me2)] ()]

845 De‘bam cf the Test of the Iterative Procedure ,

ﬂle iteratim algorithm described by Equation (2) was applied to

‘the Hilbert matrices of order m = },5,6,7 and 8, even though it is not

expected that: mybhing of h:.gler order than i will be encountered,

H'm and 1’,,., were first computed in single preciszl.cn from their
analytical forms, A first approximation to the inverse of Hw , (denoted by

' Bo in Eq. (3)) was themn computed in single precision by means of the M

share routine. The residnal matrix C of Eq. (3) was then computed
C =B, Hn

and the accuracy of B, Ias Jndgedbyccaputingthemofthesqnaredel@— i
ments of Co :If ¥ ¢’ € m? x 10716 theaccuracgmjudgedsnfﬁm
andnofurtheractimwasta.ken. It Zc.‘ >mt xd0” the iterativ
procedure of Eq. (2) was initiated for a tétal of six cycles. If at the snd
of six cycles of iteration the error test was still not met, Hw, T and B,
were recomputed in double precision and the 1teration was repeated, using -
as a test Y ci.<m ¢t 10718,

8.6 Results of the Test

The results of thé comparison between the SHARE routine inverse
and the iterated interse are ahown in graphic form in Figures 1 through 6.

Each of Figures 1 'Ehrough 5 provides ZcH 5 defined as [cll
and al80 |¢;j[,.o, %% a5 a function of the mumber of iterations completed
in single prec:.sicn. The zéro order iteration in each case is the share
routine mverss. The acceptable level of accuracy for single precision in.
terms of |/Clf  is given in the upper right corner. Note that in no case

- does the single precision share routine meet the requirements, and that itera-

tion does not satisfy them eithu although there is significant improvement. -
The case of =8 is quite cleatlg' outside of the Wsmall error" range asmd -
in the developmemt of the iteration eqnatims. ‘ :

Figure 6 provides ”0—“ and ‘,lmax for the double precision cal—"

culation, in the case of m = 8, The corresponding curves for M =14,5,6 and 7‘

were omitted because in each case the precision requirement was met either by -
the share routine inverse (= 14,5,6) or by the first iteration on the latter
(m=7)e It is clear that the required level of precision is not met even by
the double precision 1terat1on, though there is a factor of nine improvement.

| . QRIGINAL PAGE 18



_-"In almost every case, the reduction of error is greatest in the
first iteration and the error either increases or remains canstant with succeed-
ing iterations. This implies that the number of iterations attempted in the
prog'an could be limited to ane or two without penalty.

: m test used in these comparisons involves the sum of the sguared
of the error matrix C, and as a consequence does not limit the magnitude of
the individual elements of C as much as is desirahle. This is illustrated

" in the figures by the fact that the largest magnitude entries of the error
matrix exceed the desired level of edfer (I part in 10”) even in the double
precision computatiens. &£ finer test is therefore needed.

8.7 Comclustens I A

The present Sﬂﬂ routine is inadequate in single precision and
iteration does not provide acceptable accuracy.

- The share routine is probably adequate in double precision for most
of the matrix inversions which will be done. However, the iteration routine

provides a large factor of improvement in critical cases, and shounld there- -
fore be included as an option. R ,

The precisian test on the elenents of the error matrix should be
le: l ¢ 10”9 ', instead of the coarser test [[Cl| < mZx10°1®
nsed in this comparison. This new criterim being 1ncorpora:bed into
test program. ‘ ‘ :
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@IVATIVES IN TERMS OF CENTRAL DIFFERENCES _J

@ g E. E. GRINOCH Ju TR Wit
: P°IQ» ’OL awb'[ (Su_,[g(f_,?,ﬂ,(, lO—o)) oTS Jy

~An elegant and poverful method for obtaining formulse for differenti- -
ation in terms of functional values, at equally spaced points of the
independent . viiriable, is by means of finite difference operators. In
particular,: farmlae are conaidored here in terms of the central difference
operator. .

9.1. Symbols and Definitions.
Define.' xi+1"xi"h i=o0,1, 2, ven

The central difference symbol § , When prefixing a functional symbol y
say f, represents an operator. Specifically, it operates as follows:

br(xy 4y) = f(xg ) - fx) =y 4 g oy
or, s:Lmilarly, gfi = fi + i_«- £y - 'ﬁ' : ‘ : v (l)

’5‘-1 g-i *' ‘fé {4é"1 5‘g-1

S x*ng e

Yo 7§ Jzé,, T 2 S‘fo

: * g‘ | | ‘Sz{i L 54{1 o 5‘ P
, "%% 5‘%% B of "
" {L , | gzgg - J4f‘ N 5§44,

TABLE OF CENTRAL DIFFERENCES




The central differences table given above shows that Only even order

 differences have integral suffixes.

To exﬁress Qifférences in terms of the function values from which they
are derived, take ?n succession:

gf%" b
o S e i
8‘% o v‘[ f fursfert:

and in general:

5{ Zé(i) £l (m- lﬁ,)‘ f’”m -+

It is convenient to introduce a few more operators.
- The operator E is defined by
| M) = e (2)
or, in general,
By = £y 4

That is, E is a "forward shift operator", as it advances the argument from

OBE value to the next in a table of finite differences. In a similar fashion . .

is defined as a backward shift operator, i.e.,

Now, if a table'is.the'only source of information about a function, we may
assume the function represented by the table as being differentiable as

many times required, but must keep in mind that functions defined by
analytical formmlae are adequately represented by tables only in ranges away

from 31ngularities and discontinuities.

This assumption implies, therefore, that the function under consideration -

can be expanded in a Taylor series over the range, say | %, i] . That is:

f(x +mh) = £, = £, +ahDf, 4 b (oh) D°

+1 @)’ + ... (3

1

— ok « 3!

where =4 ,k=1,2, «vc.
axk

Of course if the series is cut off after m terms, the remainder is of the
order of (nh)M,

100




N ok ‘ .
From e =Z l_u, comparison with (1) shows that formally the Taylor
k=0 k! , :
expansion.can be written:

A f(x0+ nh) - ._.1_. (nh)k D k fo = _enhD £ .
| ~ Z-—'o; k! °

In particular, for n=1: -
‘ hD

f(x thy=e £ =f£ L W
from vhich '
E= ehDA
and " -
P = etx + ).
Define % £(x, ) = £(x, + 4b) , which is consistent with the previous

definition (2) of E.

We can establish a relatn.on between the central operator 5 and E
as follows: . &

ST S e
| in_f“%- = B -5y
so that formally: C

and | 2 | x

| § =8t _2 +5t

The "avereging operator" 4¢ will also be used. It is defined by:
T S

ATy -‘,'é'(fi r3t ey )=3 (B2 £, +E fi)

- 80 that formally

é'v %(Eﬁw E'%) e (6
and M= 14442 |
Now if (4) is substituted in (5) and (6),
{=2sinhw}hb o - (7)
= cosh 4 hD - | |

Of course, use of the above relations imply use of the :Tajlor expansion in

S10m




the form
| €D £(x) = £(x+§)

and in practice only a few terms of the series can be retained, thus
introducing & truncation error.

; Hith ‘these operators and relationships among operators, formulae
for numerical differentiation are readily obtained. Indeed, from (7) A

. :hD= 2 sinh~t %J - . ' oo A8
= [ sinh™t %—X ]S- o ,
v - | (80)
X c"‘l[ Sin;'{ 1§ ]@'5 (8b)

which gives the derivative D in terms of central differences.

Expressions (8a) and (8b) have been introduced for practical reasons.
Since the function is usually available for integral values of the subscript
an expa.nalon is sought which gives hD in terms of tabular values.

Ths form of (8b) gives hD in terms Of(.u' X andé«(. . Now, if
ford&. -1 we write:

@ ‘-(1+i-£2)'5 |
1-%&&2) "2 (&{2 R - 1.3.5 347

2.4.6
+ 1.3.65.18 3£2)44+0w0°)
3 2.4.6. A
~and if for sinh-l %g R
, 23 ve write:
1 e
sinh. = 1-16%+3 g% - 6
Y 7 7 N G T
. -3"55»;:53 + O (nl0)
; - 294912 -
and substltute both expansions in (8b) we obtain:
o= 1-18% + 184 - 185 + 168 + ol (9)
6 30 140 630 :
or

1 (84 -8 e
6 30 6
(5 J f_l)] (10)

which is an expression for D which only 1nvolves even order differences,

as required.

p=1ff-5,-1 ({21"1 8% £) +
2h 6
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@ " This analysis of the rectification process is concerned with the

preservation of accuracy in the computation of the osculating orbite
The position and velocity at time ¢ may be computed from

-
———

s é(t) :/é 4—2 A, . .
T R S @

where /&, and XA, are the position and velocity vectors, respectively, at
epochy %, o The functions £, g, £ and g are implicit functions of time. In
two of the formmlations under comsideration they are explicit functions of

. either range angle, © (differential true anomaly, @ - 7), ) or Herrick's

:  Variable, R o The first formulation is valid for elliptic, parabolic and

— hyperbolic orbits while the formulation in terms of Herrick's variable is

: . valid for all conic sections including the rectilinear cases,

AT

. .
e

. 10,1 Herrick's Variahle . V
The‘position /?. amd velocity %, vectors at epoch, Z;, are assumed
to be known in a non-rotating Cartesian coordinate system. The following v

quantities are then computed

L

/;; = fa .,Ea ‘ | (z)
s2= AR - |
. RBR |
D, = Lol
o | (k)
_ s 2 g ‘ E : |
6 * 2 -1 (5)
i | | |
%=é—?. o (6)
” = ./ A o | (D




| _ R .
“The computation then requires the calculation of X when time t
is specj.fied. The process continues with the calculation of

M= % (£-¢,)

(8)-
Next aolve the transcendental equation ;
Mm=gR+roéred ®
A
for X where
A 43'“--5_*)?4-_;(‘*‘ ‘
4 U= X [3./ sla  9la? qja° ], ' ' (190)
As Pi EA:E 24 56 ..
.; - +A_ - X "‘—0 [
é X e! dla €lat Bla’ ] (1)

The Newton-Raphesen technique may be employed for the solution of the trans-
cendental equation (9). The study will determine a first approximation to

the solution of (9) that is suitable for, the iterative process. After obtain-
ing an accurate value of )? the calculation continues with

-1~ ¢ s
/ ) 7;-' | - a2

= /Cf"lj - ‘ : ‘ V‘“,
5 yA4 = R V ) 3

: A A /\ : ' :

regepsrte (25)

. — A
7 'L___—-"/f“ﬁ‘s | | (16)

-]

j: b 4 —% | A(]_7)

10k




These, values are t.hen substituted into (1) to de'tem:i:ae‘ t.he value
of Blt) awd B(€)e _ |

‘ . The functions U and £ (Eqs.e (:w) & (11)) are :infinite series
expansins, Since the argument £°/a. could #a certain situstions become
~ large, a great many terms would have to be employed to limit the truncation
errar at the expense of accummlated round off error. Herrick foresaw the

possibility that this difficulty might ar:.se and pravidad a shifting epaeh
ccncnpl.' to cope with thia problem, o g

. In order to calculate /2 and E ,,attimet rherei‘ fo:.s

1arge; select an intermediate time <: such that traty oty o Let
A .
M= 5 (te-ts) .
A bt ' S S @a8)
My 'ﬁ‘(_f/ t4) | - - (8)

1)
(o)

(21)

(22) -

These formulae may be used when one ta.nts to retain the vectors £e and /95 3
however in generating an ephemeris one rould shift the epoch ‘uy employing

/ﬁ, Z,
B fir

,./‘?0 - . 23)
then _ | - )
12/‘7'8“&(7/’:‘ . , |
5o fu Bevdg e | (@)
B ) \



By suitably choosing f -t; the argunem; X;,/a-may be kept mall ‘

. In addition to the above techniques for :Insm'ing the accuracy of
‘the computation a contimued fraction expansion of 0 and & will be tested
in hopes nt ernlarging the practical interral of cmvergeme :
- 102 Rangexngyrormm '

Thacmbatimofﬁandf mtmaofthemgaanglooumt—

e :mo—' B ‘ B (25)

Z: BxE; c=/&]

(26)
The equation

Ct-t,e 2|96 o
cfo TR I >

where

u(e)=_£;=._éi‘__'+<3_.'. &)eso-masme (@)
r(e) e L C® ‘ r ~

may be iterated by the xmm techmique to detern:{ne ® when t ia
given. Itcanbe shomn that ¢

n

(30)

o J cu(e) ‘ | - | Gt

. %.: ("“ /mo(.t- Code) 6/#9}

e (32)

4= z- ﬁd (2-cos ) o (33)
ce ,




e /,@ w e "

‘ : !ha Mégral in aqna*bim (28) nay bn mlnated in oloaed fom. Lol
' Hmver the closed form depends on whether the conic is an ellipse, parabala 1

or hyperbola., Ih.ntomhotﬂlbesubjecttolargaerrmmthem- ~
parabolic case, ,

One possible method of elininat:lng the d:x_fficulty in the near-para-
bolic case is to evaluate the integral numerically. Several techniques for
evaluating definite integrals such as the trapezoidal rule with and without

- end correction, Simpsents Rnle with and without end correction will be tented,

These methods will also be employed with and without interval controls If =
at last one of these methods gives good wesulis, then an integration of the
Chevyshev polynomial approx;intion will be 'baated in an effart to increase
the etfieiancy of the program, .

: An in-house program is aJ.roady available for co:lputing the clnmba.
of the state transition matrix in terms of the range angle @ which is valid
for elliptic, parabolic and hyperbdlic’'orbits. The precision of the computa—
tion of these elements depends on the precision of the evaluation of two
dzﬁm.to :mtegpals siniliar to that in equation (28). ‘ ‘
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33,6 {INCORPORATION OF BIAS ERRORS
INTO THE ESTIMATIONS PROCEDURE \

, Jo A, Winokur .ol TG MW-,rwma
Pcaz- Ne ou—‘(. Cg&»dcq,t{»% I°-°> oS &

. Im soxhe trajectory computations an estimate of bias errors will
be desirable as am output of the program in addition to the position and .
veloclty wordinate est:.mates wh::.cb. are presently provided. g

. Ihei‘o]lwing sections provide a list of the bias errors whlch
will be mdu -available as options in the XR, and show how they can be in-
corporated into the estimation procedure, The partial derivatives which
are required to fill out the various matrices are not explicitly derived

in th:Ls rm L e
11.1 Bias Error Types

The bias errors to be considered are of 19 different types, e.g.,
unknown errors in latitude of a given tracking station, or errors in the
knowledge of the second harmonic of the earth's gravitational potential,
This does not limit the total mumber of bias errors to 19, however, since
there may be several of a given type —- for example, ten 1atitude errors to
be de'bexmnad for ten different tracking sites, v

Typel wmnmma....;. ..qu A%M

Type 2 - LONGITUIE ERROR. . . . . . . .« Atas- Yoz

Type 3 HEIGHT FRROR ¢ o o o o o o o o A¥g3-A%1c0 | |
These indices allow any or all of 38 separate stations

to be located. The indices will be subdivided as
follows: . 7

7=
- }5-52 lat., s long., he:Lght errors respectlmly‘

8390)  for 8 R—fl tracking systems i
1526} . .
53«6l t lat., long., height errors respectively
91-102) for 12 HINI'!R&CK stations

27-36 i .
65-7L } lat., long., height errors respectively
103-112) for 10 DSIF stations

37-lh .
75-82 | lat,, long., height errors respectlvely
113-120) for 8 MERCURY stations :



Type 4  ERROR IN THE KNOWLEDGE OF VELOCITY OF LIGHT. . . A%y,

ijq 5 . FRROR IN KNOWLEDGE OF GRAVITATIONAL CONSTANT '
. 3(‘ TEBMASSOFTHEERTH....-'.........A‘flz;

Type 6-13 FRRORS IN KNOWLEDGE OF HARMONIC COEFFICLENTS

Omeon"o.oo.Q-oooo.o-ohOOAﬁes-A“‘i.ga

In other words, the earth's gravitational potential
. will be considerad as described by the eight harmonics
1‘/'123 J, through 4 = J3 , with errors A4y,;, ., A¥,,,

Type 1y mmmmor masmonomcu UNIT « o o A4ysg

Types 15-19 ERRORS IN KNOWLEDGE OF ATMOSPHERIC PARAMETERS .
| ' FOR ELECTROMAGNETIC PROPAGATION PATH OOMP o « « « A%y,

No allowance has been made for estlmatlng bias errors in the
computation of the drag forces due to the atmosphere and to the solar flux-
because the fundamental parameters in this computation are not constants, R
but are derived from tables of exper:.mental data, and thus do not lend- the:n-
selves to a bias estimate, . ‘ ‘ o

‘ In the case of- a.MSpheric computations for the electromagnetic
path correction, a cruder model of the atmosphere can be used, which is
expressed analytically in:terms of the five "constants" No, H, /o, Hm and

Ho. Consequently, a bias estimate on these "constants" is possible, at least R

over a short period of time during which they actually do remain constant,

11.2 Inoorporation of Bias Errors in the State Vector and the Variational
. Parameter Vector i : -

At present the state vector consists of the six quantities which .
_correspond to the "best" estimates of position and velocity corrections,
 This set of quantities are to be expanded to include any or all of the com-:
ponents A¥,,.,8%,.. In all probability, only a few of these will ever be
used on any part:.cular trajectory run; for exanple, the state vect.or may be

T .;’ A.’LG > g or in eneral - = JASLi
A e » O g ’ A‘f’ - - >
¥ Aﬁo : o o A,
oamd R
‘.Z_Avff"’,i)- S T \AYPU



. where P «ee P, are chosen from the list of numbers 7-132. Note that
the ve Eas diménsions (r + 6) x 1. ‘

Since the variational parameters rather than the state variables

themselves are being used for internal computations, the &% vector mst

also be modified. It will be expanded to the same dimension as that to

which A% has been augmented, The proper choice of angmented S™*, S and

"§‘ matrices (to be discussed in ‘the following sections) mkea it possible
to define the new AX vector as v :

(44
| A;«b'

AR ey

LA«fﬁ,J‘.

where A"(i» A& are the old var:.ational parameter increments and A‘Y’P ) ,A“fﬁ_
are the r b:x.as errors. .

- . _ 11.3 Review of H:.ninnm Var:i.ance Equatious and Sunnnm'y of Hamces
: %o be Expanded

In order to see c]sarly which matrices mist be modified, it is help- '
ful to write down the minimmm variance equations which mst be handled,

1) A= Kay
2) ke QUG
A : ' 3) )l NQ (th)N(i— €z
T '![’Q(ta» )y’
e 5 Q&) = Qltp)- KN“'Q(’CQ |
The mmber of obsm:'vables in the AY vector is not ai‘fected by any change
in the state vector, so that the changes must be reflected in the K matrix,
which is determined by Q, N, and Y,

But Q is updated by means of 'T from its value at t,, which is
6) Q(to) =S (t P(t )(sf(to) 1 S ‘(t )P(ta (5.1(150))




where P(to) is the covariance matrix of the state vector A % 5 and S -1 and

S relate the state vector to the variational parameter vector as follows
= 94 4% = SaX |
2

o }4»«= X ayesay

| ﬂms,ifthenewformofSandslandthat of Y areknown, Q
'is determined from the input matrix P(to) by items 6) and 3).

Similarly Y is determined by ) if Q is known and if N is known.
The €2 matrix is the covariance matrix of the instrument errors and is not
affected by any change in the state vectcr.

Bnt N descnbes the relataon between the observables and the
variational parameters:

A/ »IAo( Dy a4 =2 Dy ax
'Bop\ ?’f ,30(

Ab/ MSAok Na
N=ms

W '
One additional matrix M =37, mst be modi.f.‘u:dS therefore, when

AX 1is modified. Note that all the quantities in 1) -5 are now determined,

In summary, the matrices which must be angmented when A}‘ and 4% are
expanded are = - , .

7)' 5'(1-:) = 2—*— :
8) s (f)
~r
9) P(to) = E(A*Ht ) Awm)
10) Plet,): 2 |
Dk (£0)
o) M(t)‘w
| D¢



1Lk Angmmta‘bion of S(t) and S~1(t) |
Accordmg to the def:mition of S, and the expanded vectors-

AY and A,
. (Gxé) ' (6xr)
AV \ v ) L
A e f i s, S4
A"‘Pﬁ (rx(,) ( X

~ It is clear that the 6 x 6 matrix S; which relates the old A4 to
the old AX must be the old S(t) matrix, ' B

Since the position and velocity coordinates at time t cannot change

if there should be a change in the bias errors at time t, S = 0,

: Thsbiaamm-s 'tmet,ontheotherhand,donotdepmden
- ‘ ~ the variational parsmeters 4~ .44, so that S3 = 0, and since the same bias
o errors appear in both A)‘and the A= vector, Sy = I,

Similar reasoning for s71(t) results m conclusions which are
summarlzed graphically below.

s () : No)
(ex6) 1 (6xr)
S(t)= f-——+——-—=—~—
(xe) ; (exe)
S i(*.:) : O
gt (exe) 1 (6xr)
Sk ——FT———-—— |
o | I
(rxa') E (:TXr)
u




1.5 @ﬁputétion of Qéto) and Expansion of P(td)i
Q(t ) = S74(¢,) P, )(6((1' ))‘
£ (2) Pt ) (s ‘(t,)

The ma:brix P(to) mst be provided as an input.

EA‘\& « » Eay, A‘l‘b: - Eay A"p,..
P | 2
. AN - E A%, y
P(t,)=E(A+(t.),A')‘((tg)) I T 3—} T T
5A+PA$1. S R EA%,,

: It is reasonable to assume that the bias errors are nncorrelated
with each other or with the errors in the initjal estimates of position and
velocity, in which case the upper right-and lower left-corner entries are
all zm. : . ,

'l'his assumption makes i‘o riecessary to snpply only t.he r additional

" terms along the main dia.gonal, pilus the cnginal 6 x 6 P(to) matrix indicated E

above, -
11.6 Augmentation of Wll(t to)

. The definition of P (t, to) is in terms of the new and old value
of the var:.ationnl parametver vector ,

Add (£) 2 DAL Ao«ec)- wy( b+, ax(t.)

= (to)
see what mst be done to the " matrix it is helpful
tion graphically as follows, Can



It is clear that Y, must be the original variational parameter
wansition mtrj-x, i.e.) -q’i - ‘?. B »

E The S(t) and S~1(t) matrices represented point transformations at -
a given time t, and therefore changes in the bias errors produced no changes '
in-the six original variational parameters. However, V¥, above relstes changes
in ‘the bias errors at time to to changes in the six original variational =
parameters at time t, and this means that P, is not identically zero, - |

To see how the elements of P, are obtained, imagine that the
variational parameters are simply the ordinary state variables, position
and velocity, so that L : o

P, - | iz1,..,6 §= P Fe
Now, one colum of W, might be 9#i)s, where ¢ is the earth's gravitational

constant (g+:#422 in the nomenclature of 11l.l.). Remembering that +s, (i1,.,6)
is obtained from Brcke integration of the motlan equations, i.e. :

S = fedot
4 B fme) (e
the following set of differential equations in 4. results:
6 K ‘ , . '
_A_(Qﬁ) Z_)_f_ o, Z;L_ e+ DB izi.6,
w\3¢/ M i e o e



In the above equations, #;rg stands for the jih component of the
vector which 1s the solution to the two body problem, This set must now be
solved ford%:/ds, Note that since F is a known function, the coefficients
of o4, pgon 't.he Tight side are known also,

]

htnrn:mg to the more general problem of obta.lning the ma.tn.x Y. %“%)
L4, .. 6 f& y oo, Py when the — “%:'s arethe variational parameters 1
note that, B '

',fﬁ',%:)g‘;(u = Bo{; (€) a4} B
Dy (k) Iy () 2 ()

8ince the. 911 S are the same as the corresponding components of the expanded
 state vector (see 11.2). Graphically, 'H/a’ may be d:a.splayed as follows:

On comparison with the augmented § l(t) of ll.h, it is clear that the first
6 x 6 matrix above is the same as that of S=1(t); it is the orlg:,nal (6 x 6)

8'1 which is presently in the prog‘am.

The second of the two matnces whlch constitute 'II/ consists of
partials such as the one mentioned earlier in this section. The remainder
~of these partials have not yet bepn evalnated.

To comlete the angmentatlon of .Y , the two submatnces Ps and

P, are required, P is the zero matrix, because the bias errors do not =
~depend on the vanational parameters, 1‘?‘ is the r x r identity, since the c ?
bias errors are constant in time, S :

11.7 “Augment'ation of M(t)

By definition, M(t) = MOy 15 the matrix of partials of the 1
observables with respect to the state variables, If the mmber of observ- '
ables is m, and the order of the state vector is 6 + r, then M must be an
(m)x (6 + r) matrix, Graphically, : !



M;(t)

(anf)

R R SN R S— - —_————

‘l'he first ax 6 submatrix mist be the old mt), since it describes
the relata.onahip between the observables, which have not changed in number,
and the old state variables,

The second mx r submatrix, My, describes the variation of the
observables with the bias errors. It consists of partlals which have not
yet been explicitly evaluated, ,

an exa.nple of the type of partial involved in Hz is illustrated
by the case in which range to the vehicle from a radar station is one of
the observables, and the location of the radar is in error by an nnknoun

bias. Letting . Y ve the observable range,

Y- '/—:f *:)* -r('a_ '35) +(}:3~S)

where (x, y, z) are . the inertial coordinates of the slxip and ('\/'_,/ é 0’“
those of the station.

Then 36’/3 ¥s, dr / 9 9*73 s Tepresent the sensitivity of
the observation to errors in t e stat:Lon position errors, where

?_}:: - ("f’"f’"l_
Ws F Y

_g-ﬁ—
_ﬁ_}z__

These éartlals then appear in the appropriate colwm of the M,
sub-matrix, - ‘
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In MINIVAR, the state transition matrix is used only to trans-
form the covariance matrix of the state variables from one data point
 to the next. "Consequently, the transition matrix precision affects
- the precision of"- the folloning arrays:

1. the transformed covariance matrix;

2. the optimum filter K;

3. the updated covariance matrix obtained from l. by the
inclusion of data.

It is of particular interest in thls study to evaluate the effect of

the elements of  , the state transition matrix, on the elements of K.
The importance of this investigation has been polnted out hy D. Proctor,
since the updated state vector is given by

A K’('Zs '30) Km?y (1)

' where A)ﬁ ‘.-. ‘state variahlw

i

K ='opt1mum fi!ter,

'%c = calculated observatlon,
Bog observation,

and since 3¢ is computed to high prec1sion, it is reasonable to expect
K to be calculated to the same precision as A A program is des=~
“cribed in this memorandum which calculates th senszt1vity coefficients
ok /3?&,~ . This program will be employed in a computer study to
determihe to what precision the ¢¢.omust be calculated so that the-
are. sufficiently precise. These results will then be used
in {ask 2, Phase 1] of the Orbit Determination Program to decide the
validity of - tu0¢body partial derivatlves in computing the state tran-
sition matrix. ;

_ZAL_QMN‘V of
The optimum filter K is obtained from

K= P AT [MP(EIM Tyee]?
(2)




where P(t)'- covariance matrix of the state variables at time t3

M

observation matrix relating the state varlables and
the observatlons, .

s éé; matrix of obseryatianal e?aors. B

aThe array P(t) is given by ‘ o :

| P(t) Be,t oP(to) CID(t te) @)
| where d?(t to) = state transition matrix relating state variables at
. time t, to state variables at time t;

Plty) = covariance matrix of state variables at time t,

Letting'P(fb)a- P, and ‘substituting (3) into (2),

K @R [upaghirre ] @

uPdétmultiplying (4):- . R R
‘K[M@%@%{*:é‘;(‘ @%@{Mf | '. S (5,

9% & 36287 | 4 @ g2 -

3?% (I KM) el ? 4? Sh & [M@ ’ +CJ (6)

. () 2AERT) (8287)x

9’%‘ e - (7)

Assuming that there are, in general, six state variables, and letting

~.n.be the number of observables at a data point, the matrices in (7)
have the following orders:

K: " 6Xn
M: nXé6
- Pos  6X6

,»@5: 6X6

(I1-KM): 6X6



' To analyze the cbmpﬁtationr

: It is the purpose of this program to evaluate éé /Df&j,w o
Since the (s, are 36 in number, and since n may be as large as 4,
the maximum number of partials is (36)X(6)X(4) = 864. The minimum
number of partials occurs when n = 1: (36) X (6) X (1) = 216.

12.3 Eir‘glu_qt;on of 3(@%@()/3@%\.\, .

Partial derivatives of the matrix @Po @f are composed of ;
partials of the elements of @*itself. Since we are here concerned !
with the evaluation of these partials at the time K is computed, we. : j
are. interested in the change in the elements of (tr) arzsing from o
a change in ¢ (tr). It is evident, then, that' :

tiﬁ

9?@m 1™ B B (8)

. In other words, ‘the partial of an element w1th respect to itself is

unity; the partial of an element with respect to any other element is
zero., Rewritlng Eq.k(7),

» (T-km) quF Pfﬁ( @PD@T (@PQ‘F)? L (5:)‘ .:

(1-kM) = As ﬁxéj
P& - a: 6x6
O P, = R: 6X6

(3P &K = Bs 6xn

q. (9) then becomes : o %

k- AdB gs 5+ ARIE 8
’B“;Zw Ser o 2 (10)
Again, let e :
QB =VSx 6Xn
AR = T: 6X6 ;
so that - | : |
Pk . A% s +T233" 8 L
X ., % . )




The matrix }K/3»¢m is 6Xn.
we will cbmpu%f each term factor by factor. -
the product A

(341‘2; 82 13 3y '34! 36 [ o

aai » e . i . o - ‘ (o]

841 ;'. FOR oo ] o

gy 0

&/0Psr is a 6X6 matrix of th

= A éd;

Considering the iight side of (11),

From the first term,
e form

0o o o’ o 0

3 {Lf'fw‘;

S0 that the product has non-zero elements aj; only in the mth columhgg

Postmultiplying (12) by S:

Qo ¢ Rona 2

Azt Fwe

aﬁi‘%wz_

Consequently, the typical term of (13) is C1j
C:AB(T)\Q ~

me,

e Al

Y Ao AV

(13)

a‘é.‘l Pvav

= aiinyL{ where

(12)



. * ‘Turning now to the second term of (11), the product
L has the form ‘ o

- %" o (14)

o . t‘w .

@ S o - Eeww -

so that the product has now-zero elements tym only in the 1th column.”
Postmultiplying (14) by B: o L

/timb,u : timgbna ) - #im b.am,
te

oo boy ;,tz"“llz e bt

o =, e ; (15)

S L,
\ténw,’u tmbee b Dl

The typical term of (15) 1skdij‘= t,imbgj where D = T?ifB.v
Combining (13) and (15), - ° b

" Y XK s Crdq e
L O Pl | -
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12,4 Programmigg‘Procegureg

‘ In order to compute Eq. (17), a program must be available to
pravide the elements of the following matrices: K, M, Poy and. § .o
Having these matrices avallable, the following Operations are- per~ :

formed' ! : : :

"(15)

1. Form;the product~KM: (6X6)

2. Take~the difference A = (I- KM) (6xe)

3. Form V;Ithe product Q = P, @"' (6X6)

4. Form 'th‘e_‘ or.oduct'Ri :QPO; (6x6)

5. Form the produe£ @P @f @Q' (6x6)
6.  Take the 1nverse (@ P, Q( ) (6X6)‘

7. “i’o"rm:i:?the .produqt B s ( ® p, @" ) K: (6Xn)

8. Form'the'product:_;z‘an (6xn)

9. Form the product}T = AR: (6X6)

10, From the elements of A & S, construct Czsuchethat'

qu quiﬁhm% for'Specified‘l & m.
11. From the elements of B & T, construct D such that =
dﬂ tbmbq for specified 1 & m.

12; From. the elements of CcC & D, construct G such that
B Gj+dy

As noted previously, there are 864 %;1 ‘s if n = 4 & 216 g;fs if
.n = 1. The subscrlpts 1 & m range from 1 to % in a}l combiffations.

12.5 rAggligation to Varjational Parameters

In order to evaluate the prec151on of the variational para-
meters used in the MINIVAR Program, recourse. may be had to two
procedures.

-
-

1. Analytically convert the variational parameters to elements

of the state transltion matrix and proceed as described
above,

ole22-



‘ . 2. Develop corresponding equations for the parameters and
N i ' ~investigate the effect of the variational elements on L.

. For the second alternative, one may take advantage of the
. symmetry existing between the formulations for K & Ls

Aa‘ L 4¥ (18)

L=Qg, Q’(;J‘f [mqon*’m' +;é_=] | st
Consequently, the matrix of partlals becomes‘

(I LIJ) 9 (-Q QoQ() (Q QoQ() L (20)
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. Jilmplementation of the Executive Routine (XR) on the
7094 under IBFTC system is hampered by certain systen
restr:ctions. Among these restrictiahs are:

?xnvﬂ?cz

ll. lSYSINI cannot be rewound or written on during
- executlnn.‘ - ,

2."F11es cannot be written or read in mixed mode.’
This restriction prevents the generation of a mixed
mode file of BCD control cards and binary text,

| 3. Handling of a m1xed mode file utilizing I0CS MAP
‘subroutines requires standard’ look—~ahead characters
for successful processxng.j :

’13.1 Alternate Executxve Routine

K ‘ 13.1. v Utilizat:au of H:story Tape | - S N  ! s

. . The BCD program decks and compiled bimary verswns will o S
be maintained on a history tape. The executive routine -
will be in three parts as follows.‘ s

Part 1 controls readlng~in of control cards, additlons.
and deletion for the run, This part reads in control .
cards for future processing, updates the programs to he = . |
compiled onto SYSIN1l and loads onto SYSIN1 parts 2 and 3 j
of the XR, Control is then transferred back to IBJOB and
compilation of source programs proceeds.

Part 2 executes after compilation of changes is complete. i
"The compiled binary output on SYSPPl and altered source . ;
programs are updated onteo the history tape., Part 3 of" o i
the XR is now executeﬂ., l Y S '

Part 3 reads run parameters and assembles the object , s
programs required on the SYSIN1l. IBJOB loads and executes :
the program. = . - o e ; ‘

, _ The history tape procednre will require MAP sub- ‘ S

routines utilizing IOCS to form the mixed-mode tape SYSINI o

and to convert the binary tape SYSPP1l to mixed BCD-binary

, form with correct look—ahead characters. All manipulations
. of SYSINI will be controlled by I0CS MAPS subroutines, .




-
L M:.
L
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‘13.152 Library Tape Procednre.'

This procedure will require definition of SYSLB2
tape to contain library routines exclusively. All
routines to be utilized in the proegram will be maintained
“on SYS£32 via the Librarian function included in IBSYS

13.1.2. 1 1&$rary Tape Procedure 1,

This procedure will require all prograns to be
npdated into SYSLB2 to be on SYSIN1 in binary compiled
form. The library tape SYSLB2 is updated via the S
librarian routine in IBSYS utilizing replaoo. insert
and delete control cards, ,

Execntion of the program is governed by control cards
on SYSINl as a separate run, $OEDIT options utilizing
alternate drive feature will be used.

No H&P-coded routines are required but the user must
specify via correct control cards the routines to be loaded
at object ttmo.

© 0 13.1.2,.2 Library Tape Procedure 2.

The XR. rontxne in this implementation will accept

source programs and control cards for object time

execution and:-generate the required binary images on
SYSIN1 after IBFTC cempiles them,

This procedure would require IOCS HAP subroutines

'to write SYSPP1 onto S!SINI in proper format for the

librarian.

Tho altermatives presented thus far are based on a limited

knowledge of the IBSYS-IBJOB monmitor system. Informatiom is being
songht concerning IBSYS system usage and system modrfications
affecting implementing of these schemes.

L
{
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The following notes relate to the assignnent of values
to the second, third, and fourth harmonics of the earth's poten-
tial. It is hoped that these notes will provide the basls for
a more accnrate orbit deternination program,

14,1 _Con arison of Kaula'

i ' The recommended notatlon of the earth potentlal, as
given by Kaula (Ref. 1) is

U= C’“[i-!—z Z (_) P (ést)(MMCos,m)\ 5 MSNM)\)]
where , | | | |
- A= oM

s diﬁtanaerfiom the earth center

<

R is the mean equatorial earth radius

Csu”e)ls the- Legendre Polynominal with : .
argument (sm@) :

(5 is the .latitude

A is thefldngitude

My v are the zonal and sectoral harmon1c
under consideration

B Since here we are only concerned with zonal harnonics
and the .oblate component of the potential, the above expression
can be reduced by letting nw=© , using only the harmonic terms,
and letting the distancde units he in earth rad11-'

Uyt -‘;'.—“—'[Z (4P “w'ﬁ) c',w o]

mszl




Further, "“’1‘ recommends that when m =0 , let Gu nu® = Jm.

~ Thus - , S

Uob - -éz_{:ri P (65,4(3) +:r P (6/&(3) +3§;§%>(5N(3’;)‘

(6“‘ )+ :
‘%—-[f&w*%@“"‘(" :) -—( pozee)

+3 (35 s ta- 18 ,le.+é_>+....]
_L(B‘smle ?6' £'s)

f_‘

But Jl kls zero, and 5»)(3 é/r'

so that ‘ = ‘
e[ (1) - B 1)
o=y (5 4) |

This notation agrees with that given by the MINIVAR
nannal (ref 2) page XII-27, except that MINIVAR uses the

- Jno notaticn, rather than the Jn notation. However, the two

are equivalent

Since Kaula ‘s representatxve equation for the poten-

tial is in- full agreement with that given in the MINIVAR nanual._»

and progra., ‘the coefficients should also agree. A comparison

~ of Kaula's values of J;, J; ,and :r - with that of MINIVAR



(Ref 2, pag; iII—27) shous“exabt agreements except for the:
- sign of J, term.

14,2 _m;e.&_;i_tu_'_:.

" The- yxogran of J.P.L. (ref. 2), uses the symbols J,
H, and D for the second, third ‘and fourth harnonics, respectxve-
ly. The ublat“;pptential is glven by

U:%[Ia(issmz¢) 4 Hal ( !s;d¢)szd¢

4

" oaz_(s.;;;*o st rafon's)e.. |
esRM N |

i By properly -anxpulating the J.P.L. equat;on, and
letting a, _1_ \sm;f ;/f, =r

b Y e[(08) -2 (01 )
(an)( Jf(}_) ( )+:’

3sr

Equatxng MINIVAR & Kaula's representation of the potential

e J
: 3
T : 2
Jy, =80
» 46 37
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These equalities agree with standard procedures. The

Values for J, H, and D used by J.P.L. are

J = £1.62345 x 10-3
H =  -.575 x 10-5
D - { 7875 x 1073

Therefore, uslng J.P. L.'s notation and findzng the
equivnlent values of J20, J30 and J40%

J2o = £1.08230 x 1073

Ja0 -.230 x 10~9

~1.800 x 10~6

J4o

These numbers a ?:ee precisely with the values of J2,
J3 and J4 given by Kaula (Ref. 1, pps 2 and 4):

gy = ”/1092.30 x 107%
J3 = -2.3'x 1076
Jg = -l. 8 x 1076

Thns, it would appear that the J.P. L. program and

'MINIVAR agree_in definitions of the constants, agree precisely

in magnitude, but disagree in thag the sign of J40, given

on e X1I-27 of the MINIVAR Manual, should b ative

rather than positive to be consistent with J,. P L. This also

agrees with the comparison with Kaula, given in the preced1ng

,section.

~ Thus, the printed ‘value of CONKR from MINIVAR would
be £.1343886 x 10=3, rather than the negative of this value,

_since CONKR - f;_ Ja0 (Ref 2 p. XII-28).

'14 3 Comgarison with ITEM

According to the ITEH Manual and the progran listing,
the ITEM input quantities are

Second Harmonic = uJ = 19.9 x 1623 x 10-6 = 03229

Third Harmonic = 4dJ30 = 19.9 x -2.30 x 1076 = -, 4577x10"4
Fourth Harmonic = - 1 &K = 19.9 x 6.75 x 10-6 = -,6665x10~4

7




Numerical values of J, J3g have been selected here
and K derived from Kaula and others. The quantities in the
right hand side of the equalltles are roughly in agreement
in magnitude and exactly iu sxgn with the prznt—outs from the
ITEI progran. :

14.4 ggg;ggg

1. The second harnonic teru is correct 1n both
~ " TITEM and" !IHIVAR and agrees with standard
;practice.~-

2. The third harmonic teru is correct in both
programs; the difference in print~out being |
explained by ITEM's use of Agg = & J30 (see

- ITEM program listing) and uINIVAa' ?CONAR)
which is -aJ30 (see pages XII-28 of the
MINIVAR manual). :

3. The fourth harnonic term is correct in ITEN,
but has the wrong sign in MINIVAR. That is,
J40 on page XII-27 of the MINIVAR manual .
should read -1.8 x 10-6, thereby agreeing
with the ITEM progran and the work of Kaula

| ‘ - and others.

Ref ls ™A Review of Geodetic ?arameters‘, W. M. Kaula,
NASA TN D-1847, Goddard Space Flight Center, 1963.

Ref 23 'Program Manual for Minimum Variance Prec1sion
Tracking and Orbit Prediction Program®, D. S. Woolston
and John Mohan, Goddard Space Flight Center,
X-640-63~-144, July 2, 1963. : :

Ref 3: 'Spacb Trajectories ?régram for the IBM 7090 Computexr®™,
: . D. B. Holdridge, J.P.L. TR No. 32-223, March 2, 1962,
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15 ol Introductlon

: The bondlng of radio waves passing through the troposphere and
' 1onosphere 1limits the inherent precision of modern electronic tracking aystems

- . Some form of refraction correction is therefore necessary to achieve the T ;

- maximum aocnracy ‘of our satellite tracking sysbems.~_ TR : BEE S G

7 Correction of the troposphere error can bo approached from two points :
of view. The first, the analytical method, involves assuming a simple expo~-
tentigl decay of the index of refraction with altitude. The resulting tropo~
spheric errors for range and elevation are soluable in closed form as a function
of the elevation ‘angle.

The second method is numerical in form. For this method, it is not
necessary to assume an exponentially decaying troposphere; any model will suf-
fice. The error is determined by numerically integrating over the total . :
propagation path with the index of refraction at each integration point bemg
determined by the assumed model. :

rid

.. Because of the complex nature of the :lonosphere, it is very difficult -
' . to find a simple model upon which analytic solutions to the ionospheric errors
. can be based. - Therefore; a numerical approach seems to be more likely for an

ionospherlc analysis.

A further refinement to thls program may be that the refraction
correction will be made dependent on the predicted elevation angle rather than’ -
" the measured elevation angle, and, since the predicted angle is subject to an .

error, a test is made on the variance of this predicted angle. If this vari-
ance is above a present limit, the computer will make one iteration to ineclude
the data point to get a better estimate of the elevation angle before making the
final correction.: : _

The refraction correction is then based upon this new elevation ‘ L
‘angle and it is the results of this second iteration which will be processed by
the minlmum variance system.

15.2. Method of Attack

The method that will be used is one derived by S, Weisbrod as detailed ~
in Reference 1. The method is particularly simple and can be applied to both - -
tropospheric and ionospheric bending. There are no limitations on the shape of ‘
the profile or angle of elevation. The only assumptions are that the index of
refraction gradient is only in the vertical plane, that the index of refraction.
profile can be approxmated by a number of linear segments and that the thickness

of these steps is small compared to earth's radius. These assumptions are readily
justifiable in all practical cases. In additlian to refractive bending, the prob-

. lem of signal retardation, resulting in range error, is considered. Also, tba
o - effect of refractlve bending on range rate measurementa is 1ncluded. ,



©15.3. Index of Refraction Models Used

15.3.1. General
Since it would be an overwhelming taek to analyze completely atmoapheric

~ propagational effects under all parametric conditions, atmospheric models rep-

resentative of average cond1t10ns are employed to simplify the computational
problem,

< In t}_ie, models that are used, the folleumg asstmptlons are made:
1) The tro e extends to approximately 40 km with refractivity decreasing
with height; 2) The region between the end of the troposphere and the beginning
of the ionosphere is assumed to have zero refractivity; 3) The ionosphere lies
between h  and 2000 kmj 4) Beyond 2000 km the refractivity is zero.

With . few ‘axceptions, the formulai used to compute range and elevatien
errors are the same for both the troposphere and ionosphere. The refmct1v1ty,
however, is cmnputed differently. B

This approach results in answers which are as accurate as the models
assumed. Since profiles of refractive <index in the atmosphere (especially for
the ionosphere) are not preclsely known under all conditions a more exact '
solution seems unwarranted at this time. - .

15.3.2. Tropospheric Model

In this analys:Ls s the tropospherlc model will be assumed as an ex—
ponential, with the ground index of refraction and the scale height as parameters.

The equat.lon for this model is B
N=Ne 7H | | (1)

where No= 313 (refractivity at sea level)
H= 7 km (height scale factor)
h = height aboze the earth
V= (n-1) x 10, where n is the mdex of refraction

15.3.3. Ionospherlc ‘Model
15.3.3.1,  Ionospheric Parameters
In the lonosphere, the index of refraction is dependent on more

parameters than those considered in the troposphere. As a minimum, the index of
refraction in the ionosphere is dependent upon the height of the base of the

ionosphere layer, the height of the maximum electronic density of the F2 layer, and

the maximum electronic density of the F2 layer. In addition, the index of re-

fraction in the ionosphere is also dependent upon diurnal, solar activity, seasonal,

geographical, and daily variations as well as other miscellaneous sporatic vari-
ations. Also, unlike the troposphere, the refraction errors in the ionosphere
are frequency dependent.

132 .
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15.3.3.2. Elsctron Density Profile |

In {;he ionosphere, the relationship between the index of refrasction,

the radii frequency and the electron density in the ionosphere is the following:

2= | @
“H = / - 7

* where /A = elsctrons per cubic meter
€ = elegtronic charge (1.60 x 10™19
Ay = electronic mass (9.08 x 10~31 kilogram
e« = 2 times the frequency
€, = permittivity of free space (8. 854 x 10-12

, Using the first two terms of the binomial expansion and substituting
the above constants, the formula for index of refract:mn reduces to

2+ ’./.‘,_' 4-’03/‘? | @

f' f“-

This formula holds for frequencies above the critical frequency, fe, which: ia
given by the following relationship

-f = X,77/a‘/2/\'/d . ,' megacycleé per second : W

Defining the refractiv1ty by the follwing relatlon.
N= (n-)r08 | | (5)

equation (3) can be written as follows

v —pos (L)t 0

The model selected for electron density versus height in the ionosphere

consists of a parabolic variation below the height of maximum electron density
matched to a hyperbolic secant profile above the maximum. The relationships

are as follows: /’g - /0[/.. (/..a-)f/ oso =/
- 4 0 %(0“ ) o2/

electron density per cubic meter
ma::’imxm density
zéo
hn« - 4 2
= ght above the ground
ho = height of the base of the layer
4 T height of the maximum electron density

(7)

where

II i

2
2
r
A
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This model haa the follw:Lng desirable characteristlca.

1. The model has three degrees of fresdom (A4,, A, and/?) which can be obtained
from ionogram data. :'I'hese parameters uniquely specify the entire distribution.

2. The distribution is paraboln.c below the maximum density, nearly parabolle
i.mmediately above the maximmm, and expunential at great helght.s.

o 3. The. electron content of the distribu‘l:%ion abaf the maxlmm is three times
-+ that beloa it.‘_ ‘ ; :

4e The ‘entire electron density profile and ita derivatives are continuona
o everywhere. :

Figure 1 is a plot of the ionosphers model normalized with respect tosr~and . -
1/2 (é/ The 45 s4w, and /4 parameter refer to the F layer. Using this
model, the refractive effects of the D and E layer aré ‘not singled out, becanee
they are quite small in comparison with those due to the F layer and are a
proximately accounted for by allowing the electron density at the. bottum egée
of the F layer to be zero.

15.4. Development of the Method ;

. 15.4.1. Computation of Ray Bending b | -
" Referring to Fig. 2, consider a ray entering at angle,é an 1nf1n1tasimal
layer of thicknessqfp . Since the curvature of the ray is equal to the component

of the refractive gradient normal to the ray, divided by the index of mfraction,
it follows that: ;

Z - ___/_5‘_/_’.'-4.46 | .(8)

where K is the radius of curvature;

The length of the ray path in the layer is

,(/c/b’ = ¢l o ‘ © (9)
which, combined with (8), gives | ' .
oy = L L afB 2 SR 7 (10)
o2 % o’f f |

SinceJy 's of all elementary layers a.re directly additive, as shown in |
Fig. 2, by considering J¥’ dus to bending between points Q and R, it follows that
the contribution to the total bending ¥, due to a layer bounded by the heights
and f, is

g R
| Xjk’f " -—'u"‘"de . ()

s |

&y
R
fie




Ir t.he ray departs from the earth's surf‘ace with the elevation angle
- of 9 Snell's st for spherical stratification states: S

% G Cdrué‘ ; Mpir 3 = constant ' ) (12)

~where. o
Pa = sm'face index of refraction,
G— = Earth's radius

P =ac+h
h = height above earth,
n= index of refraction at the speclflsd height.
Fram (12) we get
ceB: (P%,,) cnob. = 1///h,o)6wr=—/3 (13)
o B (#0a/np) Aﬁv,o/n,a.) caltd ]’/L | '
A ,
= Coig /‘v)[f*v'/n,ﬂ)—-ém- 2N E
GHR - [m/m) ’-e]‘/c Gra & D
= frj gy = e By e By ‘ 1)
‘ where n, p and @ are_ the. walnes of these parameters at some height h.

Eq. (15) can be substituted in (11) to give the general equation for
refractive bending . ;

P d." ua-eo , d
Yk = fu = 6 fennfma)s m‘B:[ /. EP

Pa | |
k- J — . ) . - / T
4' w dp [(‘”P/ ";P})z- ent B7-] = . (26)

We now agsume that a) dn/dp = -k = constant, b)PK 7‘)“ h and ¢) index

of refraction n is very nearly equal to unity. On the basis of these assumptions
we can write:

R A L I OV F

—— (17)
Pk_ - ?1 : _ P- pa
where N"' LV\") ‘0
.(fn[)/ {[a (,U M) 1o ][H- (P F )//a ]g
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Fig. 3 Geometry of Bending Through a Refrnetive Layer -
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L as

(ne/ ey = s+ 2 (o-FCr- AR 3
and, sﬁbgtitnting in (16) we’getk

ké"‘"?‘*"ﬁa f [ﬂ« ’33'*7(*"‘ ;>C ""‘f,"’)/"?j ‘lp -

R P Ca-By 5‘[ - +2(f’g fo)(! k. P; )/l’;j-mB.}} (19) .

= lth
From (15) (16), and (18)

‘MBK:- C’“QP») /M\,_?O[(“UL ”3 %) C‘”‘zﬁ’?j /L

mBh . . | | ; |
&5l G”f--rﬁsx - “’a )/’,’a'J a

. - Combining with (19)

: Xa,,_, ’ hP" ot R L ('é;"ﬁ,,_ -t,~ P%§ (@) ;

(20) |

| \“ k ra, l:.
~ Fram (15), (17), and (18)
LB 204 By ""%g‘ -
il X7 Tk - A Gd

(22)

which, substituted iﬁ (21), gives the desired expreésion for
. Y §
) Mho CM{zMNIS
. | = (R ta B/«)’

= MNy=Me - "- .'(‘2,3,)»‘,'
‘ szz:(?f;;‘ *F-ZE:A.TSA:) milliradions




vhere N is éxpressed in N units (n - 1) x 108,

contributions.

Loim v
X(«M) ‘ (2. Sao(thg‘_,_}t;rs )

} It .is:frequently conventient to : measure the refractive error in terms
-of the angle subtended from the earth's center. This quantity, denoted by €,
can be readily obtained from Fig. 3.

€= Y- (e-r) | )

(24)

" The quantity (©-@ may be conveniently found in the fo]lowing manner.
From Snell's law we have -

470‘—4’-169 I o | C..—ghre
o Bscrm [6- Co-n) ]

or

=ty Jane S

Cn B = v [B-‘-(B -8)] o o
[/-—- [M,-—M)/o"‘_]cﬂg o (26b’)

Expansion of (26) and the application of small angle approximatlons
results in :

Le B) {'-[' 2lhn-n) 1o C‘*zg.] /"f T8  (27)

§[+z<~, u)/o“&d?-ﬁ]’*/}’aﬁ  om

for angies ,
are very newiy e

()

Atheights ahove the troposphere for rays departing tangentially, or
% .greater than 100 milliradians at any helght,g and Qe
(27) reduces tos

=g -U)lo"‘ w7
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15.4e2. Comiai:tation of Errors or Principal Measurements '

15.4.2.1 Elevation Angle Error

In most practical: applicationa the qua.nt:,ty of greatest interest is
the elevation angle error. This quantity denoted by § can be cbtained from
Fig. 3 by the use of the law of smes.

_,-»:’;‘a-ac.[& r) pw[[ﬂ*é)—-f]

(29)

% 4 | From (29) we get |
| R /ﬂmet_ﬁv"(/"‘ﬁ'é)

or » i b o Cre e —C5p

ap___w et O+ h o Go -
é+'z‘-:ue-—'¢:'..&,” | | ‘ S

Omttlng 67?. in the numerator of (30) results in an error of about
five per cent in the troposphere for a-tangentially departing ray. At higher
angles of elevation or greater heights, this error becomes negligible.

It should be noted that whereas & and & , due to the passage of the
ray through various layere, are directly additive ,J' 's are not. Thus, to
evaluate S at ionospheric heights or gbove, it is first necessary to combine i
the tropospheric and the ionospheric & 's or £ 's and then use (30), or (31). o
However, it turns out that in nearly all practical cases above the troposphere o

€Y, << € and £<<(tan ©=~tan®p); consequently the omission of €%/ in the numerator
an’aé- in the denominator wusually results in less than five percent error at F f
region heights. SRRt ‘ o , , !

" Eq. (30) may thus be approximated by
f. €6
t= 8- LB

It is, therefore, usually justifiable to add directly the. tropospheric :
and lonospheric 's to obtain the total elevation angle error, T

_ At astronomical distances all three quantlties (X,é and §) became. !
. . . numerically equal ‘ . } .




15.4.2.2. Retardation of the S1gna1 Passing Through a Region of a Constant
. Refractive Gradient ,

Signal retardationd?’caused by a layer of thicknessc/p (Fig. 2) is

(% -I)mgd/é = A/X/& ‘4'/6¢<_GQ’,0

given by
| (31)

_ where c and v are 31gm.1 velocitles in free space and ‘the med:unn, respectively. .

The range ‘error is glven by ‘ ~ :
. , /Ux/a c/ﬂ : (32)
| ',’ - 7 . | |

In evaluating we found (23)

I

73, | ':(Zi‘n +z:./3¢)

In other words, ‘the value of the integral for the case of a congtant: raﬂ:j.al
gradient was found to be very nearly equal to the cne that would have bt
obtained had we taken the average value of the denominator of the integrand: and
treated it as a constant. We are therefore tempted to treat the integral -of -
(32) in a similar manner. Furthermore, we can argue that at low angles sine"-
and tangent are nearly the same and at high angles the rate of change of gin
1s so slow that such procedure is certainly justifiable.

Thus we evaluate (32) by setting .

avy, ./'E pxlbye . 2xm’s P Ndp
/ i B A 3 B B
but from ;(17) S - B)"/'M Rle ?3 '
fe %
AR
4~ é 4 - 4le-r, )]6/,

N

z CU\‘\“ MACPL 'P,,)
' 1l

(™~ dn = (4’[-—#@() g0 ¢ (33)’ i

e RS e e



Sdbstitutlng in (32) we get T T G
4/‘1‘“5- C M- ,u!)(ak»f’)m _- (34)

: To campute retardation for a double passage through the layer, (34)
must be doubled. The resulting final formula for &y is:

A N YA e )
arf= & — : ‘ I
VZBEerYY AMEITES

ARt 4 A By

In the ionosphere the formula for range propagétion error is

a1 /;’ﬁ) é:v /’{/’;*,f&///‘""{““f')

2 T AL i 4 O] e

up frequency

H

.where 1

‘ " . . 2

15.4 2. 3 Doppler Error |

down frequency

Due to the refractive bending, there will generally be an
error in the measurement of the radial component of the target velocity.
The equation describing this can be readily derived with the sid of

Fig. 3.
. Let
R = station location vector in inertial coordinator
r = position venctor from earth's center to satellite in inertlal
_ coordinator : » ~ :
¥ , v" k) ,. : i
= position vector from station to satellite in inertial coordinatorﬂ
/0 = position vector from station to satellite in topocentric local
- moving cdordinates
:ﬁf& = earth's rotation velocity vector in inertial coordinates
A = Coordinate Conversion transformation matrix
s . ' /' & = Unit vectors, inertial coordinate system
¢ )4;) k = Unit vectors, topocentric moving coordinate system

TR ORGINAL PAGE B
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Therefdréf -

+Vi +2K
L e K
x 2
.;_E;
~-R = 1f - a2axR
) : . . Iy P
- AL = A(L-naxe)
. b " ', ) . “ ’
Yiag Ant + A ;,’ + Aa k
’o'XR ” o Y ' )
= 214 + A4l +)433£
Joxg] "t T s Lot
R oxe =4‘ = Azli +}/42.2_ﬂ_ +_A13E
B3 M2 M3
A= o :
A21 B22 - A23
A1 A3 B33
2 L o2 RE = Pi+/%4t ek
Vhere ,q;‘ = velocity component along the local range vector
4" = velocity component normal to the local range vector in

a plane determlned by the transmitter beam and the earth's
center .

s ? ~ . :
7 2 = velocity component normal to a plane determined by the
transmitter beam and the earth's center.

From the diagram the measured value of range rate is along the apparent
path or along the tangent to the . path at the satellite.

L%V measured = / C«ﬂ.(k §) - 74 MCK-J)
¥ redial = "’?x
Therefore the range rate error is
AVp =v radial = V measured
- foe fyen(¥-E)F P&M(Y—E)
and since (8-8) is a very small angle .




The ‘above iqn’antityr ‘is doubled for a roundtrip error.

" In the ionosnhere, the above correction for range-rate is modified
- as follous :

""" ;vf-ﬁ :+( )J(‘K S)/"

‘15.4,.3 Cmpntation of Errors in Secondary Angular Measurements.

=" The elevation angle error, computed in the precedmg section,
must be: tz:ansformed into the coordinate system of the secondary angular

meesurements in order to determine the equivalent error in these systems.

15403, Coordina‘be Conversions

To convert from the azimuth angle (é), elevation angle (9)
system to other systemss

From Fig 4A the following realtions hold for ‘the l{,y.engles: _

sin y = cos® cos (b , ( ‘
cosésin4 _, tanx- _'ct\evsintr
sin 9 /

‘cos y sin x

cos y cos X

also from Fig 4A the folloving relations hold for the 1,m direction

"cosines.

H

cosGksinC‘J ,
m = cos§ cost)-

From Fig 4B the following relations. hold for thé hour angle, declination
angles BRI ' ,

sin d

»sin‘e' sin A "- cos 8 coe¢ cos A
cosé sind | . }‘.} :
cosé co’scf sin] = 8in@ cos A
con i k= GO X

cos d sin h

cos d cos h

Lk




' Eig- La

x-y and 1-m System

T oRTR

SIN 8 Siv A .
Cos® cosd cos A’ .

s b

AOUR ANGLE -DECLINATION _
Sysrem "

Fig. 1B

‘ Hour Angle -
Declination System

_Cosd Cosh.
CosO Cos F S10 A
-S$ind Cos )

ot




~ For the xl- y system L

15.453@1 The error components

A small deviation in the elevatlcn angle uill cause a small |

'kdev1ation in the secondary angles. Thén magnitudes can be determined

by 51mply differentiating the prev1ously determined‘coordinate conversion

expr3351ons w1th respect, to the elevation angle.i

37(
39 s..rczx

( 5‘m’¢ cse a) TS

S px - 4X J | mwt 04 —"-"’-f

, uhere &f is the elevatlon angle error found 1nfhe
precedlng sectlon. ~ :

For the l - system

- -G s
L sm- dmg

LG

For the hour angle — declination system ‘

_;Jiz CoS & ‘r.w,) —SIN S ﬂasd (a.f/)

'%'9, . cosd ey

)I\ e ‘&Mﬂ'(’a&x\ Sec?e
JG‘,yl sec¢ A (c‘a.s;é SI¥ X - TAn E Césh)z

S g Cos ) Los>4
(Cose Cos g syya - s B Cos )

— S b CoS X




" In the p;v;ecediﬂg'f .
¢ is the azimuth angle‘ 3 }«
o is the el_évation ghgle |
: 7{ is the X-angle anténn_é‘ ar‘x"glel .
: B 7. is Y;angle anter‘ma;:éngl'e .

the meaéuréd 1 directio‘ri cosine

s the measured m d1rect.10n ‘cosine

A is the measured hour- angle

A is:ihe measured declination

v
o
w

s the latitude of the station location
J is.tt}e ‘elevation angle errof
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